Clean Harbors Canada, Ltd.

Annual Runoff and Industrial Wastewater Report

ANNUAL RUNOFF and INDUSTRIAL WASTEWATER REPORT – 2023

1. Introduction

Approval 10348-03-01 Section 4.3: Runoff and Industrial Wastewater requires Clean Harbors to monitor the runoff control system, as required in TABLE 4.3-D and TABLE 4.3-E. Section 4.3.19 requires Clean Harbors to submit the Annual Runoff and Industrial Wastewater Report in TABLE 4.3-D to the Director. The minimum contents of the Annual Runoff and Industrial Wastewater Report are described in Section 4.3.20 with an additional requirement outlined in Section 4.3.22. These monitoring and reporting requirements are summarized in Table A.

Table A Concordance with the *Environmental Protection and Enhancement Act* Approval No 10348-03-01, Section 4.3: Runoff and Industrial Wastewater

Approval	Requirement	Location
Section Number 4.3.19	The Annual Runoff and Industrial Wastewater Report shall include, at a minimum, all the following information:	
4.3.19(a)	An annual summary assessment of the monitoring results relative to the limits in TABLE 4.3-B;	Section 2, Appendices A, B & C
4.3.19(b)	An annual summary assessment of the monitoring results relative to the limits in TABLE 4.3-C;	Section 3
4.3.19(c)(i)	An annual summary assessment of the performance of the: runoff control system,	Section 4
4.3.19(c)(ii)	An annual summary assessment of the performance of the: pollution abatement equipment, and	Section 5
4.3.19(c)(iii)	An annual summary assessment of the performance of the: monitoring equipment;	Section 6
4.3.19(d)(i)	An annual summary of management and disposal of the: industrial wastewaters as per 4.3.7, and	Section 7
4.3.19(d)(ii)	An annual summary of management and disposal of the: specified runoff as per 4.3.7;	Section 8
4.3.19(e)	An annual summary and evaluation of management and disposal of runoff in general;	Section 9
4.3.19(f)	An annual summary of the results pursuant to 4.3.22;	Section 10, Tables 1 & 2, Appendix D
4.3.19(g)	An annual summary of runoff contraventions reported pursuant to 2.1.1; and	Section 11
4.3.19(h)	Any other information as required in writing by the Director.	Section 12

2. Assessment of Surface Water Detention Pond Monitoring Results

Pond B received surface water from the landfill facility in 2023. Pond C collects water from the non-regulated maintenance and parking area adjacent to the landfill. A new pond was constructed as part of the landfill expansion undertaken in 2023. Pond D is designed to collect water from the newly constructed "tipping pad" for the landfill. No water was discharged from Pond D in 2023 so no discharge criteria analyses were performed. The pond was sampled as per TABLE 4.3-E and these results are reported in Section 10 and Appendix C.

Ponds B and C were sampled on July 10, 2023. The results were received from ALS Labs on July 13th. The results from Pond B did not meet the discharge criteria for sodium. Pond B was resampled on July 12th and 13th after precipitation events. The July 12th sample did not meet the criteria for sodium, but the July 13th sample did meet the criteria. Discharge began July 20th and continued to July 31st. A total of 25, 248 m³ were discharged during the pumping event.

Pond B was sampled on October 5th. The results for Pond B were received from ALS Labs on October 6th. All parameters met the discharge criteria except the COD concentration. Pond B was resampled on October 10th for COD analysis, bioassay, and for oil & other substances. The COD result was received on October 13th and the bioassay and oil & other substances results were received on October 18th. All results met the discharge criteria. Discharge commenced on October 19th and ended on October 22nd. A total of 10,099 m³ was discharged during the pumping event. No water was discharged from Pond C in October.

A comparison of the Pond B monitoring results for each sampling/discharge event and the discharge criteria is shown in the Table below. The analytical reports can be found in Appendices A and B.

Parameter	Limit	July 10	July 12	July 13	Oct 5	Oct 10
		Not	Not		Not	
		discharged	discharged		discharged	
pН	6.0 - 9.5	8.46			8.1	
COD, mg/L	50	45			54	47
Total Dissolved	2500	850			630	
Solids, mg/L						
Total Suspended	25	10.6			22	
Solids, mg/L						
Ammonia, Total	5	0.168			2.62	
Dissolved (as N)						
mg/L						
Chloride, mg/L	250	41.3			13.3	
Sodium, mg/L	200	225	227	196	148	
Sulphate, mg/L	500	442			231	
Oil or other	No visible	No visible			Not tested	No
substances	sheen	sheen				visible
						sheen
Rainbow Trout	50% or	Pass			Not tested	Pass
	greater					
	survival					
Daphnia		Pass			Not tested	Pass
Magna						

A comparison of the Pond C monitoring results for the discharge event and the discharge criteria is shown in the Table below. The analytical report can be found in Appendices A.

Parameter	Limit	July 10
рН	6.0 - 9.5	8.53
COD, mg/L	50	39
Total	2500	778
Dissolved		
Solids,		
mg/L		
Total	25	7
Suspended		
Solids,		
mg/L		
Ammonia,	5	0.0597
Total		
Dissolved		
(as N) mg/L		
Chloride,	250	61.9
mg/L		
Sodium,	200	187
mg/L		
Sulphate,	500	384
mg/L		
Oil or other	No visible	No
substances	sheen	visible
		sheen
Rainbow	50% or	Pass
Trout	greater	
	survival	
Daphnia		Pass
Magna		

3. Assessment of Tank Farm Bermed Area Monitoring Results

No liquid from the tank farm bermed area was discharged to surface in 2023.

4. Assessment of the performance of the run-off control system.

The run-off control system functioned as designed in 2023. There were no issues with the performance and operation of the run-off control system.

5. Assessment of the performance of the pollution abatement equipment

The pollution abatement equipment functioned as designed in 2023. There were no issues with the performance and operation of the pollution abatement systems.

6. Assessment of the performance of the monitoring equipment

The monitoring equipment functioned as designed in 2023. There were no issues with the performance and operation of the monitoring equipment.

- 7. Summary of the management and disposal of industrial wastewaters Industrial wastewater from the operation of the Hazardous Waste/Recyclable Storage and Processing Facility (HWRSP) was solidified and landfilled.
- **8.** Summary of the management and disposal of specified runoff In 2023 no runoff exceeded the limits for the parameters listed in TABLE 4.3-B or required disposal before the results of the parameters in TABLE 4.3-B were available. Water from the tank farm bermed area was solidified and landfilled.
- **9.** Summary and evaluation of the management and disposal of runoff Pond B and Pond C water that met the criteria of TABLE 4.3-B was discharged to surface as required by Sections 4.3.5 and 4.3.6.

The monthly discharge volumes are provided in the Table below.

	July 20 - 31	May 20 - 26
Pond B	$22,587 \text{ m}^3$	$10,099 \text{ m}^3$
Pond C	2561 m ³	0

10. Summary of the results pursuant to 4.3.22

In 2023 Clean Harbors sampled Ponds B, C, and D as per TABLE 4.3-E. The September analytical results are summarized in Tables 1, 2, and 3 on the following pages. Copies of the complete analytical reports are included in Appendix C.

- 11. Summary of runoff contraventions reported pursuant to 2.1.1 No runoff contraventions pursuant to 2.1.1 occurred in 2023.
- 12. Any other information required by the Director.

The Director has not required any additional information.

Table 1: Pond B – Annual Monitoring Summary

Parameter	Result	Parameter	Result
рН	8.73	Electrical conductivity	874 uS/cm
COD	37 mg/L	DOC	12.0 mg/L
Total Dissolved Solids	572 mg/L	Total Suspended Solids	23.6 mg/L
Fluoride, dissolved	1.53 mg/L	Cyanide, (weak acid dissociable)	<0.005 mg/L
Phenols	0.0019 mg/L	Total chlorinated phenols	All analyzed chlorophenols were less than detection limit
Polychlorinated biphenyls, total	<0.06 ug/L	Total organic halogens	<0.020 mg/L
Petroleum Hydrocarbons Fraction F1 (C6-C10)	<100 ug/L	Petroleum Hydrocarbons Fraction F2 (C10-C16)	<100 ug/L
Benzene	<0.50 ug/L	Toluene	<0.50 ug/L
Ethylbenzene	<0.50 ug/L	Xylenes (total)	<0.50 ug/L
Ammonia nitrogen	0.401 mg/L	Total Kjeldahl nitrogen	1.24 mg/L
Nitrate nitrogen	0.145 mg/L	Nitrite nitrogen	<0.010 mg/L
Total phosphorous	0.392 mg/L	Dissolved phosphorous	0.321 mg/L
Calcium	35.7 mg/L	Magnesium	11.3 mg/L
Sodium	139 mg/L	Potassium	5.39 mg/L
Carbonate	12.7 mg/L	Bicarbonate	173 mg/L
Chloride	26.1 mg/L	Sulfate	241 mg/L
Aluminum, dissolved	0.0346 mg/L	Antimony, dissolved	0.00083 mg/L
Arsenic, dissolved	0.00461 mg/L	Barium, dissolved	0.0487 mg/l
Boron, dissolved	0.174 mg/L	Cadmium, dissolved	0.000219 mg/L
Chromium, total	0.00160 mg/L	Chromium, dissolved (+6)	<0.00050 mg/L
Cobalt, dissolved	0.00083 mg/L	Copper, dissolved	0.00551 mg/L
Lead, dissolved	0.000085 mg/L	Manganese, dissolved	0.00804 mg/L
Mercury, total	<0.0000050 mg/L	Molybdenum, dissolved	0.722 mg/L
Nickel, dissolved	0.0174 mg/L	Selenium, dissolved	0.00186 mg/L
Silver, dissolved	<0.000010 mg/L	Thallium, dissolved	<0.00001 mg/L
Tin, dissolved	<0.00010 mg/L	Uranium, dissolved	0.00333 mg/L
Zinc, dissolved	0.0034 mg/L		

Table 2: Pond C – Annual Monitoring Summary

Parameter	Result	Parameter	Result
рН	8.94	Electrical conductivity	914 uS/cm
COD	58 mg/L	DOC	9.95 mg/L
Total Dissolved Solids	603 mg/L	Total Suspended Solids	14.6 mg/L
Fluoride, dissolved	0.700 mg/L	Cyanide, (weak acid dissociable)	<0.005 mg/L
Phenols	0.0012 mg/L	Total chlorinated phenols	All analyzed chlorophenols were less than detection limit
Polychlorinated biphenyls, total	<0.060 ug/L	Total organic halogens	0.020 mg/L
Petroleum Hydrocarbons Fraction F1 (C6-c10)	<100 ug/L	Petroleum Hydrocarbons Fraction F2 (C10-C16)	<100 ug/L
Benzene	<0.50 ug/L	Toluene	<0.50 ug/L
Ethylbenzene	<0.50 ug/L	Xylenes (total)	<0.50 ug/L
Ammonia nitrogen	0.0218 mg/L	Total Kjeldahl nitrogen	1.12 mg/L
Nitrate nitrogen	<0.020 mg/L	Nitrite nitrogen	<0.010 mg/L
Total phosphorous	0.040 mg/L	Dissolved phosphorous	<0.020 mg/L
Calcium	35.9 mg/L	Magnesium	12.2 mg/L
Sodium	145 mg/L	Potassium	4.58 mg/L
Carbonate	13.8 mg/L	Bicarbonate	141 mg/L
Chloride	49.9 mg/L	Sulfate	258 mg/L
Aluminum, dissolved	0.0134 mg/L	Antimony, dissolved	0.00055 mg/L
Arsenic, dissolved	0.00348 mg/L	Barium, dissolved	0.0147 mg/l
Boron, dissolved	0.057 mg/L	Cadmium, dissolved	0.0000238 mg/L
Chromium, total	<0.0050 mg/L	Chromium, dissolved (+6)	<0.0005 mg/L
Cobalt, dissolved	0.00018 mg/L	Copper, dissolved	0.00275 mg/L
Lead, dissolved	<0.000050 mg/L	Manganese, dissolved	0.00953 mg/L
Mercury, total	<0.0000050 mg/L	Molybdenum, dissolved	0.0835 mg/L
Nickel, dissolved	0.00705 mg/L	Selenium, dissolved	0.000536 mg/L
Silver, dissolved	<0.000010 mg/L	Thallium, dissolved	<0.000010 mg/L
Tin, dissolved	<0.00010 mg/L	Uranium, dissolved	0.00163 mg/L
Zinc, dissolved	0.0016 mg/L		_

Table 3: Pond D – Annual Monitoring Summary

Parameter	Result	Parameter	Result
рН	9.85	Electrical conductivity	1280 uS/cm
COD	55 mg/L	DOC	8.24 mg/L
Total Dissolved Solids	873 mg/L	Total Suspended Solids	39.2 mg/L
Fluoride, dissolved	1.25 mg/L	Cyanide, (weak acid dissociable)	<0.005 mg/L
Phenols	<0.0010 mg/L	Total chlorinated phenols	All analyzed chlorophenols were less than detection limit
Polychlorinated biphenyls, total	<0.060 ug/L	Total organic halogens	0.020 mg/L
Petroleum Hydrocarbons Fraction F1 (C6-c10)	<100 ug/L	Petroleum Hydrocarbons Fraction F2 (C10-C16)	<100 ug/L
Benzene	<0.50 ug/L	Toluene	<0.50 ug/L
Ethylbenzene	<0.50 ug/L	Xylenes (total)	<0.50 ug/L
Ammonia nitrogen	0.0217 mg/L	Total Kjeldahl nitrogen	1.06 mg/L
Nitrate nitrogen	<0.020 mg/L	Nitrite nitrogen	<0.010 mg/L
Total phosphorous	0.306 mg/L	Dissolved phosphorous	0.090 mg/L
Calcium	21.2 mg/L	Magnesium	5.98 mg/L
Sodium	252 mg/L	Potassium	4.26 mg/L
Carbonate	36.7 mg/L	Bicarbonate	64.3 mg/L
Chloride	6.02 mg/L	Sulfate	504 mg/L
Aluminum, dissolved	0.0701 mg/L	Antimony, dissolved	0.00100 mg/L
Arsenic, dissolved	0.00376 mg/L	Barium, dissolved	0.0210 mg/l
Boron, dissolved	0.063 mg/L	Cadmium, dissolved	0.0000399mg/L
Chromium, total	0.00388 mg/L	Chromium, dissolved (+6)	<0.0005 mg/L
Cobalt, dissolved	0.00034 mg/L	Copper, dissolved	0.00259 mg/L
Lead, dissolved	0.000105 mg/L	Manganese, dissolved	0.00090 mg/L
Mercury, total	<0.0000050 mg/L	Molybdenum, dissolved	0.104 mg/L
Nickel, dissolved	0.00539 mg/L	Selenium, dissolved	0.00986 mg/L
Silver, dissolved	0.000012 mg/L	Thallium, dissolved	<0.000010 mg/L
Tin, dissolved	<0.00010 mg/L	Uranium, dissolved	0.00391 mg/L
Zinc, dissolved	0.0016 mg/L		

Appendix A Pond B and Pond C Analytical Report July 2023

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS

Work Order : **EO2305939** Page : 1 of 4

Amendment : 1

Client : Clean Harbors Environmental Laboratory : ALS Environmental - Edmonton

Services, Inc.

AB Canada T0B4A0

Contact : Todd Webb Account Manager : Megha Walia

Address : PO Box 390, 50114 Range Road 173 Address : 9450 - 17 Avenue NW

Edmonton AB Canada T6N 1M9

 Telephone
 : 780 663 2513
 Telephone
 : +1 780 413 5227

 Project
 : Pond B and C July 10
 Date Samples Received
 : 10-Jul-2023 15:25

 PO
 : 0000234905
 Date Analysis
 : 11-Jul-2023

Commenced

: --- Issue Date : 19-Jul-2023 10:41

Sampler : TW
Site : Table 4.3B

Quote number EO22-CHES100-008

No. of samples received : 2
No. of samples analysed : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

C-O-C number

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Alex Drake	Lab Analyst	Inorganics, Edmonton, Alberta
Amanda Powell	Account Manager	External Subcontracting, Edmonton, Alberta
Dan Nguyen	Team Leader - Inorganics	Metals, Edmonton, Alberta
Geoff Berg	Lab Analyst	Organics, Edmonton, Alberta
Leah Yee	Lab Assistant	Inorganics, Edmonton, Alberta
Michelle Schroder	Laboratory Analyst	Inorganics, Edmonton, Alberta
Ping Yeung	Team Leader - Inorganics	Inorganics, Edmonton, Alberta
Saron Gebremariam	Lab Assistant	Inorganics, Edmonton, Alberta

Page : 2 of 4

Work Order : EO2305939 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B and C July 10

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Measurement Uncertainty: The reported uncertainties in this report are expanded uncertainties calculated using a coverage factor of 2, which gives a level of confidence of approximately 95%.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Unit	Description
-	no units
mg/L	milligrams per litre
pH units	pH units

>: greater than.

<: less than.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Page : 3 of 4

Work Order : EO2305939 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B and C July 10

Analytical Results

EO2305939-001

Sub-Matrix:**Water** Client sample ID: Pond B

(Matrix: Water) Client sampling date / time: 10-Jul-2023 09:30

Analyte	CAS Number	Result	LOR Unit Method/La.		Method/Lab	Prep Date	Analysis Date	QCLot
Physical Tests								
рН		8.46	0.10	pH units	E108/EO	12-Jul-2023	12-Jul-2023	1032412
Solids, total dissolved [TDS]		850	20	mg/L	E162/EO	-	12-Jul-2023	1032312
Solids, total suspended [TSS]		10.6	3.0	mg/L	E160/EO	-	12-Jul-2023	1032808
Anions and Nutrients								
Ammonia, total (as N)	7664-41-7	0.168	0.0050	mg/L	E298/EO	11-Jul-2023	11-Jul-2023	1033385
Chloride	16887-00-6	41.3	0.50	mg/L	E235.CI/EO	11-Jul-2023	12-Jul-2023	1032488
Sulfate (as SO4)	14808-79-8	442	0.30	mg/L	E235.SO4/EO	11-Jul-2023	12-Jul-2023	1032489
Bioassays								
Daphnia magna LC50		See	-	-	DAP-LC50-48/3D	-	13-Jul-2023	-
Trout bioassay LC50		attached See attached	-	-	TRT-LC50-96/3D	-	13-Jul-2023	-
Total Metals								
Sodium, total	7440-23-5	225	0.050	mg/L	E420/EO	11-Jul-2023	11-Jul-2023	1032626
Aggregate Organics								
Chemical oxygen demand [COD]		45	10	mg/L	E559-L/EO	-	11-Jul-2023	1032504
Oil & grease (visible sheen)		Absent	-	-	E566/EO	-	12-Jul-2023	-

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Analytical Results

EO2305939-002

Sub-Matrix: Water Client sample ID: Pond C

(Matrix: Water) Client sampling date / time: 10-Jul-2023 09:30

Analyte	CAS Number	Result	LOR	Unit	Method/Lab	Prep Date	Analysis Date	QCLot
Physical Tests								
pH		8.53	0.10	pH units	E108/EO	12-Jul-2023	12-Jul-2023	1032412
Solids, total dissolved [TDS]		778	20	mg/L	E162/EO	-	12-Jul-2023	1032312
Solids, total suspended [TSS]		7.0	3.0	mg/L	E160/EO	-	12-Jul-2023	1032808
Anions and Nutrients								
Ammonia, total (as N)	7664-41-7	0.0597	0.0050	mg/L	E298/EO	11-Jul-2023	11-Jul-2023	1033385
Chloride	16887-00-6	61.9	0.50	mg/L	E235.CI/EO	11-Jul-2023	12-Jul-2023	1032488
Sulfate (as SO4)	14808-79-8	384	0.30	mg/L	E235.SO4/EO	11-Jul-2023	12-Jul-2023	1032489
Bioassays								
Daphnia magna LC50		See	-	-	DAP-LC50-48/3D	-	13-Jul-2023	-
		attached						
Trout bioassay LC50		See	-	-	TRT-LC50-96/3D	-	13-Jul-2023	-
Total Metals		attached						
	7440.00.5	187	0.050	ma/l	E420/EO	11-Jul-2023	44 1.1 2022	4000000
Sodium, total	7440-23-5	107	0.050	mg/L	E420/E0	11-Jul-2023	11-Jul-2023	1032626
Aggregate Organics						1		
Chemical oxygen demand [COD]		39	10	mg/L	E559-L/EO	-	11-Jul-2023	1032504
Oil & grease (visible sheen)		Absent	-	-	E566/EO	-	12-Jul-2023	-

Page : 4 of 4

Work Order : EO2305939 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B and C July 10

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **EO2305939** Page : 1 of 8

Amendment :1

Client : Clean Harbors Environmental Services, Inc. Laboratory : ALS Environmental - Edmonton

Contact :Todd Webb Account Manager : Megha Walia

: PO Box 390, 50114 Range Road 173 Address : 9450 - 17 Avenue NW

Edmonton, Alberta Canada T6N 1M9

 Telephone
 : 780 663 2513
 Telephone
 : +1 780 413 5227

 Project
 : Pond B and C July 10
 Date Samples Received
 : 10-Jul-2023 15:25

 PO
 : 0000234905
 Issue Date
 : 19-Jul-2023 10:41

C-O-C number :----Sampler :TW

Site : Table 4.3B

Quote number : EO22-CHES100-008

AB Canada T0B4A0

No. of samples received :2
No. of samples analysed :2

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Address

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

<u>No</u> Quality Control Sample Frequency Outliers occur.

Page : 3 of 8

Work Order : EO2305939 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B and C July 10

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					E۱	/aluation: ≭ = l	Holding time excee	edance ; 🔻	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Aggregate Organics : Chemical Oxygen Demand by Colourimetry (Low Level)										
Amber glass total (sulfuric acid) Pond B	E559-L	10-Jul-2023					11-Jul-2023	28 days	1 days	✓
Aggregate Organics : Chemical Oxygen Demand by Colourimetry (Low Level)										
Amber glass total (sulfuric acid) Pond C	E559-L	10-Jul-2023					11-Jul-2023	28 days	1 days	✓
Aggregate Organics : Oil & Grease by Visible Sheen										
Amber glass (hydrochloric acid) Pond B	E566	10-Jul-2023					12-Jul-2023	28 days	2 days	✓
Aggregate Organics : Oil & Grease by Visible Sheen										
Amber glass (hydrochloric acid) Pond C	E566	10-Jul-2023					12-Jul-2023	28 days	2 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) Pond B	E298	10-Jul-2023	11-Jul-2023	28 days	1 days	1	11-Jul-2023	27 days	0 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) Pond C	E298	10-Jul-2023	11-Jul-2023	28 days	1 days	*	11-Jul-2023	27 days	0 days	✓
Anions and Nutrients : Chloride in Water by IC										
HDPE Pond B	E235.Cl	10-Jul-2023	11-Jul-2023	28 days	1 days	√	12-Jul-2023	27 days	1 days	✓

Page : 4 of 8

Work Order : EO2305939 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B and C July 10

Matrix: Water						valuation: × = ∣	Holding time exce			Holding Tir
Analyte Group	Method	Sampling Date	Ex	traction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	g Times Actual	Eval
Anions and Nutrients : Chloride in Water by IC										
HDPE										
Pond C	E235.Cl	10-Jul-2023	11-Jul-2023	28 days	1 days	✓	12-Jul-2023	27 days	1 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
Pond B	E235.SO4	10-Jul-2023	11-Jul-2023	28 days	1 days	✓	12-Jul-2023	27 days	1 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE	5005.004	40 1 1 0000	44 1 1 0000		4.	,	40 1 1 0000	07.1	4.1	,
Pond C	E235.SO4	10-Jul-2023	11-Jul-2023	28 days	1 days	✓	12-Jul-2023	27 days	1 days	✓
Bioassays : Survival/LC50 Daphnia Magna 48 hours										
HDPE										
Pond B	DAP-LC50-48	10-Jul-2023					13-Jul-2023	5 days	3 days	✓
Bioassays : Survival/LC50 Daphnia Magna 48 hours										
HDPE										
Pond C	DAP-LC50-48	10-Jul-2023					13-Jul-2023	5 days	3 days	✓
Bioassays : Survival/LC50 Rainbow Trout (96 hours)									1	
LDPE carboy										
Pond B	TRT-LC50-96	10-Jul-2023					13-Jul-2023	5 days	3 days	✓
Bioassays : Survival/LC50 Rainbow Trout (96 hours)										
LDPE carboy										
Pond C	TRT-LC50-96	10-Jul-2023					13-Jul-2023	5 days	3 days	✓
Physical Tests : pH by Meter										
HDPE										
Pond B	E108	10-Jul-2023	12-Jul-2023	0.07 hrs	0.25 hrs	# EHTR-FM	12-Jul-2023	-51.45 hrs	0.07 hrs	UCP
Physical Tests : pH by Meter										
HDPE										
Pond C	E108	10-Jul-2023	12-Jul-2023	0.07	0.25	*	12-Jul-2023	-51.45	0.07	3 ¢
				hrs	hrs	EHTR-FM		hrs	hrs	UCP

Page : 5 of 8

Work Order : EO2305939 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B and C July 10

Matrix: **Water**Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

							I lolding time exoct			
Analyte Group	Method	Sampling Date	Ext	raction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : TDS by Gravimetry										
HDPE										
Pond B	E162	10-Jul-2023					12-Jul-2023	7 days	2 days	✓
Physical Tests : TDS by Gravimetry										
HDPE										
Pond C	E162	10-Jul-2023					12-Jul-2023	7 days	2 days	✓
Physical Tests : TSS by Gravimetry										
HDPE										
Pond B	E160	10-Jul-2023					12-Jul-2023	7 days	2 days	✓
Physical Tests : TSS by Gravimetry										
HDPE										
Pond C	E160	10-Jul-2023					12-Jul-2023	7 days	2 days	✓
Total Metals : Total metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										
Pond B	E420	10-Jul-2023	11-Jul-2023	180	1 days	✓	11-Jul-2023	179	0 days	✓
				days				days		
Total Metals : Total metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										
Pond C	E420	10-Jul-2023	11-Jul-2023	180	1 days	✓	11-Jul-2023	179	0 days	✓
				days				days		

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

Rec. HT: ALS recommended hold time (see units).

UCP: Unsuitable Container and/or Preservative used (invalidates standard hold time). Maximum hold time of zero applied. Test results may be biased low / unreliable, and may not meet regulatory requirements.

Page : 6 of 8

Work Order : EO2305939 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B and C July 10

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water		Evaluation	on: × = QC frequ	ency outside sp	ecification; ✓ = 0	QC frequency wi	thin specification
Quality Control Sample Type				ount		Frequency (%	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Ammonia by Fluorescence	E298	1033385	1	20	5.0	5.0	✓
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	1032504	1	20	5.0	5.0	✓
Chloride in Water by IC	E235.CI	1032488	1	11	9.0	5.0	✓
pH by Meter	E108	1032412	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	1032489	1	11	9.0	5.0	✓
TDS by Gravimetry	E162	1032312	1	20	5.0	5.0	✓
Total metals in Water by CRC ICPMS	E420	1032626	1	15	6.6	5.0	✓
TSS by Gravimetry	E160	1032808	1	20	5.0	5.0	✓
Laboratory Control Samples (LCS)							
Ammonia by Fluorescence	E298	1033385	1	20	5.0	5.0	✓
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	1032504	1	20	5.0	5.0	✓
Chloride in Water by IC	E235.CI	1032488	1	11	9.0	5.0	✓
pH by Meter	E108	1032412	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	1032489	1	11	9.0	5.0	✓
TDS by Gravimetry	E162	1032312	1	20	5.0	5.0	✓
Total metals in Water by CRC ICPMS	E420	1032626	1	15	6.6	5.0	✓
TSS by Gravimetry	E160	1032808	1	20	5.0	5.0	✓
Method Blanks (MB)							
Ammonia by Fluorescence	E298	1033385	1	20	5.0	5.0	✓
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	1032504	1	20	5.0	5.0	✓
Chloride in Water by IC	E235.Cl	1032488	1	11	9.0	5.0	✓
Sulfate in Water by IC	E235.SO4	1032489	1	11	9.0	5.0	✓
TDS by Gravimetry	E162	1032312	1	20	5.0	5.0	✓
Total metals in Water by CRC ICPMS	E420	1032626	1	15	6.6	5.0	✓
TSS by Gravimetry	E160	1032808	1	20	5.0	5.0	✓
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	1033385	1	20	5.0	5.0	✓
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	1032504	1	20	5.0	5.0	✓
Chloride in Water by IC	E235.CI	1032488	1	11	9.0	5.0	✓
Sulfate in Water by IC	E235.SO4	1032489	1	11	9.0	5.0	✓
Total metals in Water by CRC ICPMS	E420	1032626	1	15	6.6	5.0	✓

Page : 7 of 8

Work Order : EO2305939 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B and C July 10

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Survival/LC50 Daphnia Magna 48 hours	DAP-LC50-48	Water	EPS1/RM/14	See attached report.
	Bureau Veritas (Edmonton) - 9331 - 48th Street Edmonton Alberta Canada T6B 2R4			
pH by Meter	E108 ALS Environmental - Edmonton	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C). For high accuracy test results, pH should be measured in the field within the recommended 15 minute hold time.
TSS by Gravimetry	E160 ALS Environmental - Edmonton	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
TDS by Gravimetry	E162 ALS Environmental - Edmonton	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight, with gravimetric measurement of the residue.
Chloride in Water by IC	E235.CI ALS Environmental - Edmonton	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Sulfate in Water by IC	E235.SO4 ALS Environmental - Edmonton	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
Ammonia by Fluorescence	E298 ALS Environmental - Edmonton	Water	Method Fialab 100, 2018	Ammonia in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021)
Total metals in Water by CRC ICPMS	E420 ALS Environmental - Edmonton	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Page : 8 of 8

Work Order : EO2305939 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B and C July 10

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Chemical Oxygen Demand by Colourimetry	E559-L	Water	APHA 5220 D (mod)	Samples are analyzed using the closed reflux colourimetric method.
(Low Level)				
	ALS Environmental -			
	Edmonton			
Oil & Grease by Visible Sheen	E566	Water	Alberta Energy	Use a qualitivative visual observation of rainbow sheen to determine the presence or
			Regulator, Drilling	absence of oil and grease on water.
	ALS Environmental -		waste Management,	
	Edmonton		Directive 050, July	
			2016	
Survival/LC50 Rainbow Trout (96 hours)	TRT-LC50-96	Water	EPS1/RM/13	See attached report.
	Bureau Veritas			
	(Edmonton) - 9331 -			
	48th Street Edmonton			
	Alberta Canada T6B			
	2R4			
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
	ALS Environmental -			
	Edmonton			

ALS Canada Ltd.

QUALITY CONTROL REPORT

Work Order : EO2305939

Amendment : 1

Client : Clean Harbors Environmental Services, Inc. Laboratory : ALS Environmental - Edmonton

Contact : Todd Webb Account Manager : Megha Walia

Address : PO Box 390, 50114 Range Road 173 Address : 9450 - 17 Avenue NW

Edmonton, Alberta Canada T6N 1M9

: 1 of 6

 Telephone
 : +1 780 413 5227

 Project
 : Pond B and C July 10
 Date Samples Received
 : 10-Jul-2023 15:25

Sampler : TW 700 002 2542

Site : Table 4.3B

Quote number : EO22-CHES100-008

No. of samples received : 2
No. of samples analysed : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

780 663 2513

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

AB Canada T0B4A0

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Alex Drake	Lab Analyst	Edmonton Inorganics, Edmonton, Alberta
Amanda Powell	Account Manager	Bureau Veritas (Edmonton) External Subcontracting, Edmonton, Alberta
Dan Nguyen	Team Leader - Inorganics	Edmonton Metals, Edmonton, Alberta
Geoff Berg	Lab Analyst	Edmonton Organics, Edmonton, Alberta
Leah Yee	Lab Assistant	Edmonton Inorganics, Edmonton, Alberta
Michelle Schroder	Laboratory Analyst	Edmonton Inorganics, Edmonton, Alberta
Ping Yeung	Team Leader - Inorganics	Edmonton Inorganics, Edmonton, Alberta
Saron Gebremariam	Lab Assistant	Edmonton Inorganics, Edmonton, Alberta

Page : 2 of 6

Work Order: EO2305939 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B and C July 10

ALS

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page : 3 of 6

Work Order: EO2305939 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B and C July 10

ALS

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier	
Physical Tests (QC	Lot: 1032312)											
EO2305844-001	Anonymous	Solids, total dissolved [TDS]		E162	20	mg/L	674	694	3.00%	20%		
Physical Tests (QC	Lot: 1032412)											
EO2305844-001	Anonymous	рН		E108	0.10	pH units	8.74	8.71	0.344%	3%		
Physical Tests (QC	Lot: 1032808)											
EO2305737-001	Anonymous	Solids, total suspended [TSS]		E160	3.0	mg/L	3.6	<3.0	0.6	Diff <2x LOR		
Anions and Nutrien	ts (QC Lot: 1032488)											
EO2305930-006	Anonymous	Chloride	16887-00-6	E235.CI	0.50	mg/L	5.12	5.13	0.117%	20%		
Anions and Nutrien	ts (QC Lot: 1032489)											
EO2305930-006	Anonymous	Sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	70.5	70.3	0.254%	20%		
Anions and Nutrien	ts (QC Lot: 1033385)											
FC2301815-001	Anonymous	Ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0125	0.0116	0.0009	Diff <2x LOR		
Total Metals (QC Lo	ot: 1032626)											
EO2305887-001	Anonymous	Sodium, total	7440-23-5	E420	0.050	mg/L	133	132	0.961%	20%		
Aggregate Organics	(QC Lot: 1032504)											
EO2305823-001	Anonymous	Chemical oxygen demand [COD]		E559-L	10	mg/L	50	47	2	Diff <2x LOR		

Page : 4 of 6

Work Order: EO2305939 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B and C July 10

ALS

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water

Analyte	CAS Number	Method	I.	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 1032312)							
Solids, total dissolved [TDS]		E162		10	mg/L	<10	
Physical Tests (QCLot: 1032808)							
Solids, total suspended [TSS]		E160		3	mg/L	<3.0	
Anions and Nutrients (QCLot: 1032488)							
Chloride	16887-00-6	E235.Cl		0.5	mg/L	<0.50	
Anions and Nutrients (QCLot: 1032489)							
Sulfate (as SO4)	14808-79-8	E235.SO4		0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 1033385)							
Ammonia, total (as N)	7664-41-7	E298	0	0.005	mg/L	<0.0050	
Total Metals (QCLot: 1032626)							
Sodium, total	7440-23-5	E420	(0.05	mg/L	<0.050	
Aggregate Organics (QCLot: 1032504)							
Chemical oxygen demand [COD]		E559-L		10	mg/L	<10	

Page : 5 of 6

Work Order: EO2305939 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B and C July 10

ALS

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water						Laboratory Co	ontrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 1032312)									
Solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	91.6	85.0	115	
Physical Tests (QCLot: 1032412)									
рН		E108		pH units	6 pH units	100	97.0	103	
Physical Tests (QCLot: 1032808)									
Solids, total suspended [TSS]		E160	3	mg/L	150 mg/L	107	85.0	115	
Anions and Nutrients (QCLot: 1032488)									
Chloride	16887-00-6	E235.CI	0.5	mg/L	100 mg/L	106	90.0	110	
Anions and Nutrients (QCLot: 1032489)									
Sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	103	90.0	110	
Anions and Nutrients (QCLot: 1033385)									
Ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	105	85.0	115	
Total Metals (QCLot: 1032626)									
Sodium, total	7440-23-5	E420	0.05	mg/L	50 mg/L	91.6	80.0	120	
Aggregate Organics (QCLot: 1032504)			10						
Chemical oxygen demand [COD]		E559-L	10	mg/L	100 mg/L	106	85.0	115	

Page : 6 of 6

Work Order: EO2305939 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B and C July 10

ALS

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water							Matrix Spik	re (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Anions and Nutr	ents (QCLot: 1032488)									
EO2305930-006	Anonymous	Chloride	16887-00-6	E235.CI	106 mg/L	100 mg/L	106	75.0	125	
Anions and Nutri	ents (QCLot: 1032489)									
EO2305930-006	Anonymous	Sulfate (as SO4)	14808-79-8	E235.SO4	100 mg/L	100 mg/L	100	75.0	125	
Anions and Nutri	ents (QCLot: 1033385)									
FC2301815-001	Anonymous	Ammonia, total (as N)	7664-41-7	E298	0.103 mg/L	0.1 mg/L	103	75.0	125	
Total Metals (QC	Lot: 1032626)									
EO2305887-001	Anonymous	Sodium, total	7440-23-5	E420	ND mg/L	2 mg/L	ND	70.0	130	
Aggregate Organ	ics (QCLot: 1032504)									
EO2305838-001	Anonymous	Chemical oxygen demand [COD]		E559-L	ND mg/L	100 mg/L	ND	75.0	125	

Your P.O. #: EO2305939 Your Project #: EO2305939 Your C.O.C. #: 126969

Attention: ALS Reporting Edmonton

ALS ENVIRONMENTAL Bay 7, 1313 44th ave NE CALGARY, AB CANADA T2E 6L5

Report Date: 2023/07/19

Report #: R3366935 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C351740 Received: 2023/07/11, 10:11

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Daphnia magna LC50 Multi-Concentration	2	N/A	2023/07/13	EENVSOP-00154	EPS 1 RM14 2nd ed m
Rainbow Trout LC50 Multi-concentration (1)	2	N/A	2023/07/13	BBY2SOP-00004	EPS 1/RM/13

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

 $Reference\ Method\ suffix\ "m"\ indicates\ test\ methods\ incorporate\ validated\ modifications\ from\ specific\ reference\ methods\ to\ improve\ performance.$

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Bureau Veritas Vancouver, 4606 Canada Way , Burnaby, BC, V5G 1K5

Your P.O. #: EO2305939 Your Project #: EO2305939 Your C.O.C. #: 126969

Attention: ALS Reporting Edmonton

ALS ENVIRONMENTAL
Bay 7, 1313 44th ave NE
CALGARY, AB
CANADA T2E 6L5

Report Date: 2023/07/19

Report #: R3366935 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C351740 Received: 2023/07/11, 10:11

Encryption Key

Alejandro Escobar-Lopez Customer Solutions Representative 19 Jul 2023; 10:03:32 Please direct all questions regarding this Certificate of Analysis to: Customer Solutions, Western Canada Customer Experience Team Email: customersolutionswest@bureauveritas.com Phone# (780) 577-7100

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Scott Cantwell, General Manager responsible for Alberta Environmental laboratory operations.

ALS ENVIRONMENTAL Client Project #: EO2305939 Your P.O. #: EO2305939

RESULTS OF CHEMICAL ANALYSES OF WATER

				-
Bureau Veritas ID		BUG940	BUG941	
Sampling Date		2023/07/11	2023/07/11	
COC Number		126969	126969	
	UNITS	POND B	POND C	QC Batch
Daphnia Magna Bioassay				
LC50	% vol/vol	ATTACHED	ATTACHED	B032627
Rainbow Trout Bioassay				
LC50	% vol/vol	ATTACHED	ATTACHED	B033606

ALS ENVIRONMENTAL Client Project #: EO2305939 Your P.O. #: EO2305939

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	10.0°C
Package 2	11.0°C
Package 3	11.0°C
Package 4	11.0°C
Package 5	11.7°C
Package 6	11.0°C
Package 7	11.0°C
Package 8	11.7°C
Package 9	12.0°C

Results relate only to the items tested.

ALS ENVIRONMENTAL Client Project #: EO2305939 Your P.O. #: EO2305939

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Watch Lloyd	
Natasha Lloyd, Team Lead	
NShop	
Navpreet Shergill, Scientist	

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

(351740

Destination Lab:

Bureau Veritas (Edmonton)

Address:

9331 - 48th Street Edmonton AB Canada

T6B 2R4

Work Order Number: EO2305939

Original Receipt Date/Time

Instructions Received

10/07/2023 15:25

Relinquished By

Date/Time

Received By A AZECT

Date/Time

11:01 Receipt Temp See ACTR

Return as Indicated: Results: ALSEDClientServices@alsglobal.com

Invoice: ALSEDClientServices@alsglobal.com

Electronic Data: ALSEDClientServices@alsglobal.com

ALS Sample ID	Client ID	Matrix	Container Type	Test Codes	Method Description	Due Date	Sampling Date and Time	Remarks
EO2305939-001	Pond B	Water	LDPE carboy	TRT-LC50-96	Survival/LC50 Rainbow Trout (96 hours)	17-07-2023	11/07/2023 00:00	
EO2305939-001	Pond B	Water	LDPE carboy			17-07-2023	11/07/2023 00:00	
EO2305939-001	Pond B	Water	LDPE carboy			17-07-2023	11/07/2023 00:00	
EO2305939-001	Pond B	Water	LDPE carboy			17-07-2023	11/07/2023 00:00	
EO2305939-001	Pond B	' /ater	HDPE	DAP-LC50-48	Survival/LC50 Daphnia Magna 48 hours	17-07-2023	11/07/2023 00:00	
EO2305939-001	Pond B	Water	HDPE			17-07-2023	11/07/2023 00:00	
EO2305939-002	Pond C	Water	LDPE carboy	TRT-LC50-96	Survival/LC50 Rainbow Trout (96 hours)	17-07-2023	11/07/2023 00:00	
EO2305939-002	Pond C	Water	LDPE carboy			17-07-2023	11/07/2023 00:00	
EO2305939-002	Pond C	Water	LDPE carboy			17-07-2023	11/07/2023 00:00	
EO2305939-002	Pond C	Water	LDPE carboy			17-07-2023	11/07/2023 00:00	
EO2305939-002	Pond C	Water	HDPE	DAP-LC50-48	Survival/LC50 Daphnia Magna 48 hours	17-07-2023	11/07/2023 00:00	
EO2305939-002	Pond C	Water	HDPE			17-07-2023	11/07/2023 00:00	

RESULTS OF DAPHNIA MAGNA LC50 MULTI-CONCENTRATION

Client:70036ALS ENVIRONMENTAL, CALGARYJob Number:C351740Client Project Name & Number:E02305939Sample Number:BUG940-02

Test Result:

48 hrs LC50 % vol/vol (95% CL): >100% (N/A) Statistical Method: Visual

Sample Name : POND B Sample Matrix : Water

Description: Pale yellow, clear <u>Sample Prior to Analysis:</u>

Sample Collected: Jul 11, 2023 Sampling Method: 7.9 N/A pH: 20 °C Sample Collected By: N/A Site Collection: N/A Temperature: Sample Received: Jul 11, 2023 10:11 AM Volume Received: 1L Dissolved Oxygen: 8.5 mg/L Analysis Start: Jul 13, 2023 11:28 AM Avg Temp Arrival: 11 °C Sample Conductance: 1248 µS/cm

End: Jul 15, 2023 11:06 AM Storage: 2-6°C Hardness: 180 mg CaCO ₃/L

Concentration	Temperature (°C)	pH (pH)	Conductivity (uS/cm)	Dissolved Oxygen (mg/L)	Mortality (#)	Mortality (%)	Immobility (#)	Immobility (%)	Temperature (°C)	pH (pH)	Conductivity (uS/cm)	Dissolved Oxygen (mg/L)
% vol/vol	Start	Start	Start	Start	24 hrs	24 hrs	24 hrs	24 hrs	48 hrs	48 hr	48 hrs	48 hrs
0	20	7.7	341	8.2	0	0	0	0	21	7.9	351	7.7
6.25	20	8.0	396	8.3	0	0	0	0	21	8.0	402	8.0
12.5	20	8.0	452	8.2	0	0	0	0	21	8.0	458	7.9
25	20	7.9	569	8.1	0	0	0	0	21	8.0	571	7.9
50	20	8.0	807	8.3	0	0	0	0	21	8.0	801	7.9
100	20	8.0	1264	8.5	0	0	0	0	21	8.1	1264	7.6

Concentration	Mortality (#)	Mortality (%)	Immobility (#)	Immobility (%)
% vol/vol	48 hrs	48 hrs	48 hrs	48 hrs
0	0	0	0	0
6.25	0	0	0	0
12.5	0	0	0	0
25	0	0	0	0
50	0	0	0	0
100	0	0	0	0

Comments: None

Culture/Control/Dilution Water: City of Edmonton dechlorinated tap water

Hardness: 160 mg/L CaCO₃ Other parameters available on request.

Test Conditions Test concentration: 0,6.25,12.5,25,50,100 (% vol/vol)

Organisms per Vessel: 10 Pre-aeration Time: 30 min Rate of Pre-aeration: 25-50 mL/min/L

Total # of Organisms Used : 60 Test Temperature : 20 ± 2 °C Test Hardness Adjusted : No Test Volume : $200 \, \text{mL}$ Test pH Adjusted: No

Loading Density: 15.0 mL/Daphnia Photoperiod: 16:8 (light: dark)

<u>Test Organism :</u> Daphnia magna Source : In House Culture

Age at Test Initiation :<24 hrs</th>Average Brood Size :24.3Culture Photoperiod :16:8 (light: dark)% Mortality within 7 days :3.3Culture Temperature :20 ± 2 °CTime To First Brood :8 DaysCulture DietPseudokirchnriella and YTC at a ratio of 2 mL/L of culture daily. New cultures weekly, 63 daphnids

distributed into 6 culture vessels and 3 reproductive vessels.

Note:

RESULTS OF DAPHNIA MAGNA LC50 MULTI-CONCENTRATION

Client:70036ALS ENVIRONMENTAL, CALGARYJob Number:C351740Client Project Name & Number:E02305939Sample Number:BUG940-02

Reference chemical:Sodium ChlorideTest Date:Jun 29, 2023Test Endpoint 48 hrs LC50 (95% confidence interval):6.17 (5.50, 6.93)g/LStatistical Method:Untrimmed

Spearman-Kärber

Historical Mean LC50 (warning limits): 5.75 (4.20, 7.86) g/L Concentration: 0,1.71,2.56,3.82,5.7,8.5 g/L

Test Method EPS 1/RM/14

Method Deviations: None

The results contained in this report refer only to the testing of the sample submitted. Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation, including the toxicity parameters reported herein. The conductivity, dissolved oxygen and pH data contained within the toxicity report are provided for information purposes and are not individually accredited parameters. This report may not be reproduced, except in its entirety, without the written approval of the laboratory.

Analyst: Kyle Monaghan, Svetlana Sofrenovic

Verified By: Natasha Lloyd, Team Lead Date: Jul 18, 2023 03:30 PM

RESULTS OF DAPHNIA MAGNA LC50 MULTI-CONCENTRATION

Client: 70036 ALS ENVIRONMENTAL, CALGARY Job Number: C351740 Client Project Name & Number: EO2305939 Sample Number: BUG941-02

Test Result:

48 hrs LC50 % vol/vol (95% CL): >100% (N/A) Statistical Method: Visual

POND C Sample Matrix: Water Sample Name:

Description: Clear, colorless Sample Prior to Analysis:

Sample Collected: Jul 11, 2023 Sampling Method: N/A 8.0 pH: 20 °C Sample Collected By: N/A Site Collection: N/A Temperature: Sample Received: Jul 11, 2023 10:11 AM Volume Received: 1L Dissolved Oxygen: 8.3 mg/L Analysis Start: Jul 13, 2023 10:44 AM Avg Temp Arrival: 11 °C Sample Conductance: 1111 μS/cm

Hardness: 220 mg CaCO₃/L End: Jul 15, 2023 11:07 AM Storage: 2-6°C

Concentration	Temperature (°C)	pH (pH)	Conductivity (uS/cm)	Dissolved Oxygen (mg/L)	Mortality (#)	Mortality (%)	Immobility (#)	Immobility (%)	Temperature (°C)	pH (pH)	Conductivity (uS/cm)	Dissolved Oxygen (mg/L)
% vol/vol	Start	Start	Start	Start	24 hrs	24 hrs	24 hrs	24 hrs	48 hrs	48 hr	48 hrs	48 hrs
0	21	7.8	343	8.0	0	0	0	0	21	7.9	352	7.9
6.25	21	7.8	388	8.0	0	0	0	0	21	8.0	395	7.9
12.5	21	7.9	434	8.0	0	0	0	0	21	8.0	439	8.0
25	21	7.9	550	8.1	0	0	0	0	21	8.0	553	7.9
50	21	7.9	750	8.0	0	0	0	0	21	8.0	749	8.0
100	21	8.0	1188	8.0	0	0	0	0	21	8.1	1179	7.6

Concentration	Mortality (#)	Mortality (%)	Immobility (#)	Immobility (%)
% vol/vol	48 hrs	48 hrs	48 hrs	48 hrs
0	0	0	0	0
6.25	0	0	0	0
12.5	0	0	0	0
25	0	0	0	0
50	0	0	0	0
100	0	0	0	0

Comments: None

Culture/Control/Dilution Water: City of Edmonton dechlorinated tap water

Hardness: 160 mg/L CaCO₃ Other parameters available on request.

Test Conditions 0,6.25,12.5,25,50,100 (% vol/vol) Test concentration:

Organisms per Vessel: 10 Pre-aeration Time: 0 min Rate of Pre-aeration: 25-50 mL/min/L

60 20 ± 2 °C Total # of Organisms Used: Test Temperature : Test Hardness Adjusted: No Test Volume: 150 mL Vessel Volume: 200 mL Test pH Adjusted: No

Loading Density: 15.0 mL/Daphnia Photoperiod: 16:8 (light: dark)

Daphnia magna Source: In House Culture Test Organism:

Average Brood Size: Age at Test Initiation: <24 hrs 24.3 % Mortality within 7 days: Culture Photoperiod: 16:8 (light: dark) 3.3 Culture Temperature: 20 ± 2 °C Time To First Brood: 8 Days **Culture Diet**

Pseudokirchnriella and YTC at a ratio of 2 mL/L of culture daily. New cultures weekly, 63 daphnids

distributed into 6 culture vessels and 3 reproductive vessels.

Note:

RESULTS OF DAPHNIA MAGNA LC50 MULTI-CONCENTRATION

Client:70036ALS ENVIRONMENTAL, CALGARYJob Number:C351740Client Project Name & Number:E02305939Sample Number:BUG941-02

Reference chemical:Sodium ChlorideTest Date:Jun 29, 2023Test Endpoint 48 hrs LC50 (95% confidence interval):6.17 (5.50, 6.93)g/LStatistical Method:Untrimmed

Spearman-Kärber

Historical Mean LC50 (warning limits): 5.75 (4.20, 7.86) g/L Concentration: 0,1.71,2.56,3.82,5.7,8.5 g/L

Test Method EPS 1/RM/14

Method Deviations: None

The results contained in this report refer only to the testing of the sample submitted. Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation, including the toxicity parameters reported herein. The conductivity, dissolved oxygen and pH data contained within the toxicity report are provided for information purposes and are not individually accredited parameters. This report

may not be reproduced, except in its entirety, without the written approval of the laboratory.

Analyst: Kyle Monaghan, Svetlana Sofrenovic

Verified By: Natasha Lloyd, Team Lead Date: Jul 18, 2023 03:32 PM

RESULTS OF RAINBOW TROUT LC50 MULTI-CONCENTRATION

Client: 70036 ALS ENVIRONMENTAL, CALGARY Job Number: C351740

Client Project Name & Number: EO2305939

Test Result:

96 hrs LC50 % vol/vol (95% CL): >100% (N/A) Statistical Method: Visual

Sample Name : POND B

Description: Clear, and light yellow. Sample Number: BUG940-01

Sample Collected: Jul 11, 2023 Sampling Method: N/A Site Collection: N/A

Sample Collected By: N/A Volume Received: 4 x 11PAL Avg Temp Arrival: 11 °C Storage: 2-6°C

Sample Received: Jul 11, 2023 10:11 AM pH: 8.4 Dissolved Oxygen: 9.0 mg/L

Analysis Start: Jul 13, 2023 11:35 AM Temperature: 15 °C Sample Conductance: 1395 µS/cm

,		,								
Concentration	Temperature (°C)	Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (mg/L)	рН	рН	Conductivity (uS/cm)	Mortality (#)	Mortality (%)	Atypical Behaviour (#)
% vol/vol	Initial	96 hrs	Initial	96 hrs	Initial	96 hrs	Initial	96 hrs	96 hrs	96 hrs
0	14	14	10.0	10.1	8.0	7.7	54	0	0	0
6.25	14	14	10.2	10.1	8.1	7.8	180	0	0	0
12.5	14	14	10.2	10.1	8.0	7.9	256	0	0	0
25	14	14	10.1	10.0	8.2	8.0	446	0	0	0
50	15	14	9.6	10.1	8.4	8.2	871	0	0	0
100	15	14	9.5	10.0	8.4	8.4	1395	0	0	0

Comments: All fish appeared and behaved normally during the test.

<u>Culture/Control/Dilution Water</u>

Burnaby Municipal Dechlorinated Water

Hardness: 32 mg/L CaCO₃ Other parameters available on request.

Test Conditions Test concentration: 0,6.25,12.5,25,50,100 (% vol/vol)

Organisms per Vessel : 10 Test Temperature : 15 ± 1 °C Solution Depth : >15 cm

Total # of Organisms Used: 60 Pre-aeration Time: 35 min. Rate of Aeration 6.5±1 mL/min/L

Test Volume: 15 L Vessel Volume: 20L Test pH Adjusted: No

Loading Density: 0.4 g/L Photoperiod: 16:8 (light: dark)

<u>Test Organism</u>: Rainbow Trout (Oncorhynchus mykiss) Source: Aqua Farm

Culture Temperature : 15 ± 2 °C Weight (Mean) +- SD : 0.5 ± 0.2 g Length (Mean) +- SD : 4.49 ± 0.76 cm Culture Water Renewal : $\geq 1 \text{L/min/kg fish}$ Weight (Range) : 0.2 - 0.8 g Length (Range) : 3.10 - 5.10 cm

Culture Photoperiod: 16:8 (light: dark) % Mortality within 7 days: 0%

Feeding rate and frequency: daily: 1-5% biomass of trout. Acclimation Time: >14 days

Reference chemical:ZincTest Date:Jul 04, 2023Test Endpoint 96 hrs LC50 (95% confidence interval):0.15 (0.11, 0.20)mg/LStatistical Method:ProbitHistorical Mean LC50 (warning limits):0.19 (0.10, 0.36) mg/LConcentration: 0,0.04,0.08,0.16,0.32,0.64 mg/L

Test Method BV Lab's BBY2SOP-00004 is based on the latest version of EPS 1/RM9 and EPS 1 /RM13.

Method Deviations : None.

Note: The results contained in this report refer only to the testing of the sample submitted. Bureau Veritas is accredited to ISO/IEC 17025 for

specific parameters on scopes of accreditation, including the toxicity parameters reported herein. The conductivity, dissolved oxygen and pH data contained within the toxicity report are provided for information purposes and are not individually accredited parameters. This report

may not be reproduced, except in its entirety, without the written approval of the laboratory.

Analyst : Guilherme De Faria Silva Naves, Melanie Mazziotti, Yihui (Phyllis) Fang

Verified By: Navpreet Shergill, Scientist Date: Jul 18, 2023 06:08 PM

RESULTS OF RAINBOW TROUT LC50 MULTI-CONCENTRATION

Client: 70036 ALS ENVIRONMENTAL, CALGARY Job Number: C351740

Client Project Name & Number: EO2305939

Test Result:

96 hrs LC50 % vol/vol (95% CL): >100% (N/A) Statistical Method: Visual

<u>Sample Name</u>: POND C

Description: Clear, and light yellow. Sample Number: BUG941-01

Sample Collected: Jul 11, 2023 Sampling Method: N/A Site Collection: N/A

Sample Collected By: N/A Volume Received: 4 x 11PAL Avg Temp Arrival: 11 °C Storage: 2-6°C

Sample Received: Jul 11, 2023 10:11 AM pH: 8.5 Dissolved Oxygen: 9.2 mg/L

Analysis Start: Jul 13, 2023 03:55 PM Temperature: 15 °C Sample Conductance: 1295 µS/cm

Concentration	Temperature (°C)	Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (mg/L)	рН	рН	Conductivity (uS/cm)	Mortality (#)	Mortality (%)	Atypical Behaviour (#)
% vol/vol	Initial	96 hrs	Initial	96 hrs	Initial	96 hrs	Initial	96 hrs	96 hrs	96 hrs
0	14	14	10.2	9.9	7.8	7.7	56	0	0	0
6.25	14	14	10.2	10.1	7.9	7.8	139	0	0	0
12.5	14	14	10.2	9.9	8.0	7.8	229	0	0	0
25	15	14	10.2	10.0	8.2	7.9	378	0	0	0
50	15	14	10.0	10.0	8.4	8.1	697	0	0	0
100	15	14	9.8	10.0	8.5	8.4	1295	0	0	0

Comments: All fish appeared and behaved normally during the test.

<u>Culture/Control/Dilution Water</u>

Burnaby Municipal Dechlorinated Water

Hardness: 32 mg/L CaCO₃ Other parameters available on request.

Test Conditions Test concentration: 0,6.25,12.5,25,50,100 (% vol/vol)

Organisms per Vessel : 10 Test Temperature : 15 ± 1 °C Solution Depth : >15 cm

Total # of Organisms Used: 60 Pre-aeration Time: 30 min. Rate of Aeration 6.5±1 mL/min/L

Test Volume : 15 L Vessel Volume : 20L Test pH Adjusted: No

Loading Density: 0.4 g/L Photoperiod: 16:8 (light: dark)

<u>Test Organism</u>: Rainbow Trout (Oncorhynchus mykiss) Source: Aqua Farm

Culture Temperature : 15 ± 2 °C Weight (Mean) +- SD : 0.6 ± 0.2 g Length (Mean) +- SD : 4.13 ± 0.43 cm Culture Water Renewal : ≥ 1 L/min/kg fish Weight (Range) : 0.3 - 1.0 g Length (Range) : 3.40 - 4.90 cm

Culture Photoperiod: 16:8 (light: dark) % Mortality within 7 days: 0%

Feeding rate and frequency: daily: 1-5% biomass of trout. Acclimation Time: >14 days

Reference chemical:ZincTest Date:Jul 04, 2023Test Endpoint 96 hrs LC50 (95% confidence interval):0.15 (0.11, 0.20)mg/LStatistical Method:ProbitHistorical Mean LC50 (warning limits):0.19 (0.10, 0.36) mg/LConcentration: 0,0.04,0.08,0.16,0.32,0.64 mg/L

Test Method BV Lab's BBY2SOP-00004 is based on the latest version of EPS 1/RM9 and EPS 1 /RM13.

Method Deviations : None.

Analyst:

Note: The results contained in this report refer only to the testing of the sample submitted. Bureau Veritas is accredited to ISO/IEC 17025 for

specific parameters on scopes of accreditation, including the toxicity parameters reported herein. The conductivity, dissolved oxygen and pH data contained within the toxicity report are provided for information purposes and are not individually accredited parameters. This report

may not be reproduced, except in its entirety, without the written approval of the laboratory.

Donald Lai, Guilherme De Faria Silva Naves, Melanie Mazziotti, Yihui (Phyllis) Fang

Verified By: Navpreet Shergill, Scientist Date: Jul 18, 2023 06:12 PM

ALS ENVIRONMENTAL

Client Project #: EO2305939

Report Date: 2023/07/19

Bureau Veritas Job Number: C351740

Your P.O. #: EO2305939

RESULTS OF CHEMICAL ANALYSES OF WATER

Bureau Veritas ID		BUG940	BUG941	
Sampling Date		7/11/2023	7/11/2023	
COC Number		126969	126969	
	UNITS	POND B	POND C	QC Batch
Daphnia Magna Bioassay				
LC50	% vol/vol	ATTACHED	ATTACHED	B032627
Rainbow Trout Bioassay				
LC50	% vol/vol	ATTACHED	ATTACHED	B033606

RDL = Reportable Detection Limit

N/A = Not Applicable

Results relate only to the items tested.

COC Number: 22 -

Canada Toll Free: 1 800 668 9878

Page 으

					9	1	000	100		100		The Contract of the Contract o	2000
Time:		Date:	Received by:	Recei		Time.))	Date:	•	10-Jul-23 Time: Received by:	10-Jul-23 Time	logo vaepo Date:	Released by:
	N (ALS use only)	FINAL SHIPMENT RECEPTION (ALS use only)	FINAL SHIP				(ALS use only)	RECEPTION (INITIAL SHIPMENT RECEPTION (ALS use only)	Z		盈	
					4	8.4						YES NO	
URES °C	FINAL COOLER TEMPERATURES °C	FIN Campie Cust	PERATURES °C	IIITIAL C	2 5		hnia bioassays	g trout and Dap	attached), includin	as per Table 4.3B (a	Please rush. Analyze as per Table 4.3B (attached), including trout and Daphnia bioassays	re samples for human consumption/ use?	re samples for
YE C	dy Spale Intent	N/A Sample Crist	Cooler Custody Seals Intact: Types Take Sample Custody	tody S	er Cus	Cool						YES NO	
NO INTITALITY] VEC	Receipt Notification	ments identified on Sample	Comr	mission	Subr						re samples taken from a Regulated DW System?	re samples tak
INITIATED	-1	ICE PACKS FROZEN	NONE ICE I	ethod:	Cooling Method:	က စ			(Excel COC only)	(Ex		sauro (pas) cambico (citotit god)	
-	use only)	SAMPLE RECEIPT DETAILS (ALS use only)	SAMPLE RECEI		İ		wn below	ng from drop-do	aluation by selecti	Notes / Specify Limits for result evaluation by selecting from drop-down below	Notes / Speci	Drinking Water (DW) Samples (client use)	Drinking
-													
	780 413 5227	Telephone: +1 780 413 5227											
	98'-89'S. IN SEC. 11												
	1007	7											
		į,											
	2305939	בטע				T							
	Work Order Reference	Work Ord											
	_	Edmonton											
Н	Environmental Division	Environme	P4	P4	P2	12	Surface Water	9:30	10-Jul-23			Pond C	
			P4	P4	P2	12	Surface Water	9:30	10-Jul-23			Pond B	
Н			D	Ŧ	Ŧ	N		Vinnania	/45 mmm 33/		A second		
			aphnia	rout 96	able 4	_	Sample Type	Time (hh:mm)	Date (dd-mmm-yy)		sample Identification and/or Coordinates (This description will appear on the report)	Sample Identification and/or Coordinates (This description will appear on the report)	ALS Sample # (ALS use only)
DED			a 48 hr S	hr mull	.3B	BER	Todd Webb	Sampler:	Megha Walia	ALS Contact:	32305939	ALS Lab Work Order# (ALS use only):	ALS Lab Wor
_			Static	ti con		OF				Location:		Table 4.3B	SD:
_			acut	c. Ac		C				Requisitioner:			O / AFE:
_			e leti	ute I		ON		Routing Code:		Major/Minor Code:		Pond B and C July 10	Job #:
REC			nality	_eth:		TA		PO#		AFE/Cost Center:	008 (Table 4.3B)	# / Quote #: EO22-CHES100-008 (Table 4.3B)	ALS Account # / Quote #:
QUI			/ te	alit	П	IN	tuse)	d Fields (clien	Oil and Gas Required Fields (client use)	Oil		Project Information	
RE					T	EF						Stephanie Dennis	Contact:
0	ed (F/P) below	or Filtered and Preserve	Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below	=	٦	RS	i.com	@cleanharbors	Dennis.Stephanie@cleanharbors.com	Email 1 or Fax		Clean Harbors Canada	Company:
		Analysis Request	An				FAX	EMAIL MAIL	istribution: 🗸 E	Select Invoice Distribution:	NO	Copy of Invoice with Report	
	r AM to confirm availability.	ested, please contact your	For all tests with rush TATs requested, please contact your AM to confirm availability.		ı			Invoice Recipients	Invoice R		NO	Same as Report To	nvoice To
1120	Train tartiful AA-taran	-00	Date and Time Required for all E&P TATs:	nd Time	Date ar	T				Email 3		T0B 4A0	Postal Code:
ne tests.	y holidays and for non-routing	ls on weekends, statutory	Additional fees may apply to rush requests on weekends, statutory holidays and for non-routine tests.	Additions		1		harbors.com	yuha.stan@cleanharbors.com	Email 2		Ryley, AB	City/Province:
		M-S - 200% rush surcharge.	Same day [E2] if received by 10am M-S - 200% rush surcharge.	y (Ε2) if	ame da			nharbors.com	b.t	Email 1 or Fax		PO Box 390, 50114 Range Road 173	Street:
1		urcharge minimum	2 day [P2] if received by 3pm M-F - 50% rush surcharge minimum	2] If rece	day [P		FAX	MAIL	on: A EMAIL	Select Distribution:	nal report	Company address below will appear on the final report	
E LABEL HERE	AFFIX ALS BARCODE LABEL HERE (ALS use only)	25% rush surcharge minimum	3 day [P3] if received by 3pm M-F - 25% rush sui	3] if rece	day [P		elow if box checked	t - provide details b	Compare Results to Criteria on Report - provide details below if box checked	☐ Compare Result		(780) 663-2513	Phone:
		jes apply ircharge minimum	☐ Routine [K] if received by 3pm M-F - 10 Surcharges apply ✓ 4 day [P4] If received by 3pm M-F - 20% rush surcharge minimum	4] If rece	day [P		NO NA		(i)	Merge QC/QCI		Todd Webb, Stan Yuha	Contact:
		Social	at and has Some At E. on sumbarre	To the last	auting	#	EDD (DIGITAL)	긔		Select Report Format:		Clean Harbors Canada	Company:
		hatar	Turnaround Time (TAT) Requested	₫		-		Reports / Recipients	Reports /		pear on the final report	Contact and company name below will appear on the final report	Keport 10

REFER TO BACK PAGE FOR ACS LOCATIONS AND SAMPLING INFORMATION

WHITE - LABORATORY COPY

YELLOW - CLIENT COPY

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

TABLE 4.3-B: RUNOFF LIMITS FOR SURFACE WATER DETENTION POND

96-Hour Multiple Concentration Acute Lethality Test Using Rainbow Trout (Oncortynchus mykiss)	50% or greater survival
Oil or other substances	Not present in amounts sufficient to create a visible film or sheen
Sulphate	J/gm 008
wnipos	J\gm 00S
ebirolri	7/gm 0&S
(negotil as besserqxe) sinommA	7/8w g
TSS	Ze mg/L
TDS	2500 mg/L
000	20 mg/L
Hq	stinu Hq 2.9 - 0.8
яэтэмаяач	LIMITS Maximum unless otherwise indicated

48 hr Static Acute Lethality test using Daphina Magna

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS

Work Order : **EO2306128**

Client : Clean Harbors Environmental

Services, Inc.

Contact : Todd Webb

: PO Box 390, 50114 Range Road 173

AB Canada T0B4A0

Telephone : 780 663 2513

Project : Pond B July 12 - Sodium

PO : 234905

C-O-C number : ----Sampler : TW

Address

Site : Table 4.3B

Quote number : EO22-CHES100-008

No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 2

Laboratory : ALS Environmental - Edmonton

Account Manager : Megha Walia

Address : 9450 - 17 Avenue NW

Edmonton AB Canada T6N 1M9

Telephone : +1 780 413 5227 Date Samples Received : 13-Jul-2023 14:00

Date Analysis : 14-Jul-2023 Commenced

Issue Date : 15-Jul-2023 14:57

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories Position Laboratory Department

Daniel Nguyen Lab Assistant Metals, Edmonton, Alberta

 Page
 :
 2 of 2

 Work Order
 :
 EO2306128

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B July 12 - Sodium

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Measurement Uncertainty: The reported uncertainties in this report are expanded uncertainties calculated using a coverage factor of 2, which gives a level of confidence of approximately 95%.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Unit	Description
-	no units
mg/L	milligrams per litre

>: greater than.

<: less than.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical Results

EO2306128-001

Sub-Matrix: Water Client sample ID: Pond B

(Matrix: Water) Client sampling date / time: 12-Jul-2023 11:00

Analyte	CAS Number	Result	LOR	Unit	Method/Lab	Prep Date	Analysis Date	QCLot
Dissolved Metals								
Sodium, dissolved	7440-23-5	227	0.050	mg/L	E421/EO	14-Jul-2023	14-Jul-2023	1039257
Dissolved metals filtration location		Laboratory	-	-	EP421/EO	-	14-Jul-2023	1039257

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **EO2306128** Page : 1 of 5

Client : Clean Harbors Environmental Services, Inc. Laboratory : ALS Environmental - Edmonton

Contact : Todd Webb Account Manager : Megha Walia

Address : PO Box 390, 50114 Range Road 173 Address : 9450 - 17 Avenue NW

Edmonton, Alberta Canada T6N 1M9

 Telephone
 : 780 663 2513
 Telephone
 : +1 780 413 5227

 Project
 : Pond B July 12 - Sodium
 Date Samples Received
 : 13-Jul-2023 14:00

PO : 234905 Issue Date : 15-Jul-2023 14:57

C-O-C number :----Sampler :TW

Site : Table 4.3B

Quote number : EO22-CHES100-008

AB Canada T0B4A0

No. of samples received :1

No. of samples analysed :1

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

....

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers : Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

No Reference Material (RM) Sample outliers occur.

Outliers: Analysis Holding Time Compliance (Breaches) ■ No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples • No Quality Control Sample Frequency Outliers occur.

Page : 3 of 5 Work Order : EO2306128

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B July 12 - Sodium

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water

Evaluation: x = Holding time exceedance; ✓ = Within Holding Time

Wat IX. Trato						diddion.	nording anno oxobe	danoo ,	***************************************	riolaning rinne
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved) Pond B	E421	12-Jul-2023	14-Jul-2023	180	2 days	1	14-Jul-2023	178	0 days	√
				days				days		

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Page : 4 of 5 Work Order : EO2306128

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B July 12 - Sodium

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water		Evaluatio	n: 🗴 = Q <i>C frequ</i>	ency outside sp	ecification; ✓ = 0	QC frequency wit	hin specification
Quality Control Sample Type			C	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Dissolved Metals in Water by CRC ICPMS	E421	1039257	1	2	50.0	5.0	✓
Laboratory Control Samples (LCS)							
Dissolved Metals in Water by CRC ICPMS	E421	1039257	1	2	50.0	5.0	✓
Method Blanks (MB)							
Dissolved Metals in Water by CRC ICPMS	E421	1039257	1	2	50.0	5.0	✓
Matrix Spikes (MS)							
Dissolved Metals in Water by CRC ICPMS	E421	1039257	1	2	50.0	5.0	✓

Page : 5 of 5 Work Order : 5 of 5 EO2306128

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B July 12 - Sodium

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Metals in Water by CRC ICPMS	E421	Water	APHA 3030B/EPA	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by
			6020B (mod)	Collision/Reaction Cell ICPMS.
	ALS Environmental -			
	Edmonton			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered
				by this method.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Metals Water Filtration	EP421	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
	ALS Environmental -			
	Edmonton			

ALS Canada Ltd.

QUALITY CONTROL REPORT

Work Order : EO2306128

Client : Clean Harbors Environmental Services, Inc.

Contact : Todd Webb

Address : PO Box 390, 50114 Range Road 173

AB Canada T0B4A0

Telephone

Project : Pond B July 12 - Sodium

PO : 234905

C-O-C number : ----

Sampler : TW 780 663 2513

Site : Table 4.3B

Quote number : EO22-CHES100-008

No. of samples received : 1

No. of samples analysed : 1

Page : 1 of 3

Laboratory ; ALS Environmental - Edmonton

Account Manager : Megha Walia

Address : 9450 - 17 Avenue NW

Edmonton, Alberta Canada T6N 1M9

Telephone :+1 780 413 5227

Date Samples Received : 13-Jul-2023 14:00

Date Analysis Commenced : 14-Jul-2023

Issue Date : 15-Jul-2023 14:57

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories Position Laboratory Department

Daniel Nguyen Lab Assistant Edmonton Metals, Edmonton, Alberta

Page : 2 of 3 Work Order : EO2306128

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B July 12 - Sodium

ALS

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water							Labora	tory Duplicate (D	JP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (C	C Lot: 1039257)										
EO2306128-001	Pond B	Sodium, dissolved	7440-23-5	E421	0.050	mg/L	227	214	5.93%	20%	

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 1039257)					
Sodium, dissolved	7440-23-5 E421	0.05	mg/L	<0.050	

Page : 3 of 3 Work Order : EO2306128

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B July 12 - Sodium

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water						Laboratory Co	ontrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Sodium, dissolved	7440-23-5	E421	0.05	mg/L	50 mg/L	102	80.0	120	

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water	• •	. , , ,	•	, 3			Matrix Spil	ke (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Dissolved Metals	(QCLot: 1039257)									
EO2306129-001	Anonymous	Sodium, dissolved	7440-23-5	E421	ND mg/L	2 mg/L	ND	70.0	130	

Chain of Custody (COC) / Analytical Request Form

www.alsglobal.com

Canada Toll Free: 1 800 668 9878

COC Number: 22 -

으

Time:		FINAL SHIPMENT RECEPTION (ALS use only) Received by: Date:	Time: F		Date:	NITIAL SHIPMENT RECEPTION (ALS use only)	Received by:	e) 13-Jul-23 Time:	SHIPMENT RELEASE (client use) odd Webb Date:	SHIPMENT R	Released by:
			から	H				Monday July 17.		YES NO	
ES °C	FINAL COOLER TEMPERATURES °C		TIINI	quired by	um only, results re	run dissolved Sodi	ot filtered, please	Please rush. Sample not fittered, please run dissolved Sodium only, results required by	rse?	Are samples for human consumption/ use?	Are samples fo
☐ YES ☐ N/A	Sample Custody Seals Intact:	Cooler Custody Seals Intact: YES N/A Sample Custo	oler Custo	Q						YES NO	
	1: YES NO	Submission Comments identified on Sample Receipt Notification:	bmission (S					W System?	Are samples taken from a Regulated DW System?	Are samples ta
NITIATED	EN COOLING INITIATED	NON	Cooling Method:			(Excel COC only)	(E)	Company Control of the Control of th	s' (client use)	Drinking Water (DW) Samples' (client use)	Drinkin
-	1	SAMPLE	-	below	ing from drop-dowr	Notes / Specify Limits for result evaluation by selecting from drop-down below	Limits for result e	Notes / Specify			
	27	Talanhana : +1 780 413 5227									
	120	E02300									
	う。 十	Work Order Reference									
	rision	Environmental Division									
			1 P2	Surface Water	11:00	12-Jul-23				Pond B	
EX	Q A			Sample Type	(hh:mm)	(dd-mmm-yy)		(This description will appear on the report)	This description will		(ALS use only)
TEN	NAC			_	Time	Date		Sample Identification and/or Coordinates	ample Identification		ALS Sample #
DED :	ol Ee 4		d Sodiu	Todd Webb R	Sampler:	Megha Walia	ALS Contact:	306128	only): Ed 2	ALS Lab Work Order # (ALS use only):	ALS Lab Wo
STC	ON!			0			Location:			Table 4.3B	LSD:
RA	<u>п</u> С						Requisitioner:			234905	PO / AFE:
GE					Routing Code:		Major/Minor Code:		ium	Pond B July 12 - Sodium	Job #:
RE			117		PO#		AFE/Cost Center:	008 (Table 4.3B)	EO22-CHES100-008 (Table 4.3B)		ALS Account # / Quote #:
					d Fields (client u	Oil and Gas Required Fields (client use)	lio		Project Information	Projec	
										Stephanie Dennis	Contact:
\dashv	(F/P) below	Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below			@cleanharbors.co	Dennis.Stephanie@cleanharbors.com	Email 1 or Fax		8	Clean Harbors Canada	Company:
		Analysis Request		FAX	EMAIL MAIL	4	Select Invoice Distribution:	No	☐ YES	Copy of Invoice with Report	
	M to confirm availability.	For all tests with rush TATs requested, please contact your AM to confirm availability.			ecipients	Invoice Recipients		NO	☐ YES	Same as Report To	Invoice To
	dd-mmin-yy hh;mm am/[n	Date and Time Required for all E&P TATs: ੀ	Date and T				Email 3			T0B 4A0	Postal Code:
ests.	olidays and for non-routine t	Additional fees may apply to rush requests on weekends, statutory holidays and for non-routine tests	Addi		narbors.com	yuha.stan@cleanharbors.com	Email 2			Ryley, AB	City/Province:
		Same day [E2] If received by 10am M-S - 200% rush surcharge.	Same day [E		harbors.com	Email 1 or Fax webb.todd@cleanharbors.com	Email 1 or Fax		Range Road 173	PO Box 390, 50114 Range Road 173	Street:
		2 day [P2] if received by 3pm M-F - 100% rush surcharge minimum 1 day [E] if received by 3pm M-F - 100% rush surcharge minimum	1 day [E] if a	×	☐ MAIL ☐ FAX	on: MAIL	Select Distribution:	nai report	w will appear on the fir	Company address below will appear on the final report	
Y)	(ALS use only)		3 day [P3] if	if box checked	- provide details below	Compare Results to Criteria on Report - provide details below if box checked	Compare Resul			(780) 663-2513	Phone:
ABEL HERE	AFFIX ALS BARCODE LABEL HERE	minimum	4 day [P4] if	□ NA		ts with COA	Merge QC/QCI		ha	Todd Webb, Stan Yuha	Contact:
		Routine [R] if received by 3pm M-F - no surcharges apply	Routine [R] if	EDD (DIGITAL)			Select Report Format:		ä	Clean Harbors Canada	Company:
		Turnaround Time (TAT) Requested			Recipients	Reports / Recipients		pear on the final report	Contact and company name below will appear on the final report	Contact and comp	Report To

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION

WHITE - LABORATORY COPY

YELLOW - CLIENT COPY

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS

Work Order : EO2306129

Client : Clean Harbors Environmental

Services, Inc.

Contact : Todd Webb

: PO Box 390, 50114 Range Road 173

AB Canada T0B4A0

Telephone : 780 663 2513

Project : Pond B July 13 - Sodium

PO : 234905

C-O-C number : ----Sampler : TW

Address

Site : Table 4.3B

Quote number : EO22-CHES100-008

No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 2

Laboratory : ALS Environmental - Edmonton

Account Manager : Megha Walia

Address : 9450 - 17 Avenue NW

Edmonton AB Canada T6N 1M9

Telephone : +1 780 413 5227 Date Samples Received : 13-Jul-2023 14:00

Date Analysis : 14-Jul-2023

Commenced

Issue Date : 15-Jul-2023 14:57

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

 Signatories
 Position
 Laboratory Department

 Daniel Nguyen
 Lab Assistant
 Metals, Edmonton, Alberta

 Page
 :
 2 of 2

 Work Order
 :
 EO2306129

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B July 13 - Sodium

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Measurement Uncertainty: The reported uncertainties in this report are expanded uncertainties calculated using a coverage factor of 2, which gives a level of confidence of approximately 95%.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Unit	Description
-	no units
mg/L	milligrams per litre

>: greater than.

<: less than.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Accreditation

Accreditation	Description	Laboratory	Address
Α	CALA ISO/IEC	EO ALS Environmental -	9450 - 17 Avenue NW, Edmonton,
	17025:2017	Edmonton	AB

Applicable accreditations are indicated in the Method/Lab column as superscripts.

Analytical Results

EO2306129-001

Sub-Matrix: Water Client sample ID: Pond B

(Matrix: Water) Client sampling date / time: 13-Jul-2023 11:15

Analyte	CAS Number	Result	LOR	Unit	Method/Lab	Prep Date	Analysis Date	QCLot
Dissolved Metals								
Sodium, dissolved	7440-23-5	196	0.050	mg/L	E421/EO A	14-Jul-2023	14-Jul-2023	1039257
Dissolved metals filtration location		Laboratory	-	-	EP421/EO	-	14-Jul-2023	1039257

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **EO2306129** Page : 1 of 5

Client : Clean Harbors Environmental Services, Inc. Laboratory : ALS Environmental - Edmonton

Contact : Todd Webb Account Manager : Megha Walia

Address : PO Box 390, 50114 Range Road 173 Address : 9450 - 17 Avenue NW

Edmonton, Alberta Canada T6N 1M9

 Telephone
 : 780 663 2513
 Telephone
 : +1 780 413 5227

 Project
 : Pond B July 13 - Sodium
 Date Samples Received
 : 13-Jul-2023 14:00

Site : Table 4.3B

Quote number : EO22-CHES100-008

:TW

AB Canada T0B4A0

No. of samples received :1

No. of samples analysed :1

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Sampler

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers : Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

No Reference Material (RM) Sample outliers occur.

Outliers: Analysis Holding Time Compliance (Breaches) ■ No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples • No Quality Control Sample Frequency Outliers occur.

Page : 3 of 5 Work Order : EO2306129

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B July 13 - Sodium

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water

Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Wildel XI Trace						diddion.	i loiding timo oxooc	, addition ,	***************************************	i i ioidinig i iiiic
Analyte Group	Method	Sampling Date	Ext	raction / Pre	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved) Pond B	E421	13-Jul-2023	14-Jul-2023	180	1 days	1	14-Jul-2023	179	0 days	√
				days				days		

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Page : 4 of 5 Work Order : EO2306129

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B July 13 - Sodium

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water		Evaluation	n: 🗴 = QC freque	ency outside spe	ecification; ✓ = 0	QC frequency wit	hin specification.
Quality Control Sample Type			Co	ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Dissolved Metals in Water by CRC ICPMS	E421	1039257	1	2	50.0	5.0	✓
Laboratory Control Samples (LCS)							
Dissolved Metals in Water by CRC ICPMS	E421	1039257	1	2	50.0	5.0	✓
Method Blanks (MB)							
Dissolved Metals in Water by CRC ICPMS	E421	1039257	1	2	50.0	5.0	✓
Matrix Spikes (MS)							
Dissolved Metals in Water by CRC ICPMS	E421	1039257	1	2	50.0	5.0	✓

Page : 5 of 5 Work Order : 5 of 5 EO2306129

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B July 13 - Sodium

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Metals in Water by CRC ICPMS	E421	Water	APHA 3030B/EPA	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by
			6020B (mod)	Collision/Reaction Cell ICPMS.
	ALS Environmental -			
	Edmonton			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered
				by this method.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Metals Water Filtration	EP421	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
	ALS Environmental -			
	Edmonton			

ALS Canada Ltd.

QUALITY CONTROL REPORT

Work Order : EO2306129

Client : Clean Harbors Environmental Services, Inc.

Contact : Todd Webb

Address : PO Box 390, 50114 Range Road 173

AB Canada T0B4A0

Telephone

Project : Pond B July 13 - Sodium

PO : 234905

C-O-C number : ----

Sampler : TW 780 663 2513

Site : Table 4.3B

Quote number : EO22-CHES100-008

No. of samples received : 1

No. of samples analysed : 1

Page : 1 of 3

Laboratory ; ALS Environmental - Edmonton

Account Manager : Megha Walia

Address : 9450 - 17 Avenue NW

Edmonton, Alberta Canada T6N 1M9

Telephone :+1 780 413 5227

Date Samples Received : 13-Jul-2023 14:00

Date Analysis Commenced : 14-Jul-2023

Issue Date : 15-Jul-2023 14:57

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

• Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories Position Laboratory Department

Daniel Nguyen Lab Assistant Edmonton Metals, Edmonton, Alberta

Page : 2 of 3 Work Order : EO2306129

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B July 13 - Sodium

ALS

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water							Labora	tory Duplicate (D	JP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (C	C Lot: 1039257)										
EO2306128-001	Anonymous	Sodium, dissolved	7440-23-5	E421	0.050	mg/L	227	214	5.93%	20%	

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 1039257)					
Sodium, dissolved	7440-23-5 E421	0.05	mg/L	<0.050	

Page : 3 of 3 Work Order : EO2306129

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B July 13 - Sodium

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water						Laboratory Co	ontrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Sodium, dissolved	7440-23-5	E421	0.05	mg/L	50 mg/L	102	80.0	120	

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water	er Matrix Spike (MS) Report									
					Spi	ike	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Dissolved Metals	(QCLot: 1039257)									
EO2306129-001	Pond B	Sodium, dissolved	7440-23-5	E421	ND mg/L	2 mg/L	ND	70.0	130	

Canada Toll Free: 1 800 668 9878

으

FER TO BACK	Released by:			e samples for	e samples take	The state of the s	Drinkina										ALO doe offly)	ALS Sample #	ALS Lab Work	SD:	O / AFE:	ob #:	LS Account # / Quote #:		ontact:	ompany:		туоісе То	ostal Code:	ity/Province:	treet:		hone:	ontact:	company:	eport To
EFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION	Todd Webb Date:	SHIPMENT RELEASE (client use)	YES NO	re samples for human consumption/ use?	re samples taken from a regulated DW System?	the form of the control of the control	Drinking Water (DW) Samples¹ (client use)									Pond B		Sample Id	ALS Lab Work Order # (ALS use only):	Table 4.3B	234905	Pond B July 13 - Sodium		Project Information	Stephanie Dennis	Clean Harbors Canada	Copy of Invoice with Report	Same as Report To	T0B 4A0	Ryley, AB	PO Box 390, 50114 Range Road 173	Company address below will appear on the	(780) 663-2513	Todd Webb, Stan Yuha	Clean Harbors Canada	Contact and company name
	13-Jul-23 Time:	(client use)	Monday July 17.	Please rish Samo	- T												(This description will appear on the report)	Sample Identification and/or Coordinates	B2506129				EO22-CHES100-008 (Table 4.3B)	nation			☐ YES ☐ NO	☐ YES ☐ NO			oad 173	pear on the final report				Contact and company name below will appear on the final report
11:30	Received by	-	Monday July 17.	e not filtered please r		(Ex	Notes / Specify Limits for result evaluation by selecting from drop-down below										(1)	es	ALS Contact:	Location:	Requisitioner:	Major/Minor Code:	AFE/Cost Center:		Email 2	Email 1 or Fax	Select Invoice Distribution:		Email 3	Email 2	Email 1 or Fax	Select Distribution:	Compare Resul	Merge QC/QCI	Select Report Format:	
TIHW		INITIAL SHIPMENT RECEPTION (ALS use only)	all dissolved Codin	un dissolved Sodin		(Excel COC only)	valuation by selectin									13-Jul-23	(dd-mmm-yy)	Date	Megha Walia					Oil and Gas Required Fields (client use)		Dennis.Stephanie@cleanharbors.com	5	Invoice Recipients		yuha.stan@cleanharbors.com	webb.todd@cleanharbors.com	on: 🗸 EMAIL	Compare Results to Criteria on Report - provide details below if box checked	ts with CO/		Reports / Recipients
BORA	Date	RECEPTION (AL	ili olily, iceanic ice	n only recults rec			ng from drop-down									11:15	(hh:mm)		Sampler:			Routing Code:	PO#	Fields (client us		@cleanharbors.cor	EMAIL MAIL	cipients		arbors.com	harbors.com	☐ MAIL ☐ FAX	- provide details below			ecipients
	_	S use only)			100		below									Surface Water	⊢	Sample Type	Todd Webb								FAX							□ N/A	EDD (DIGITAL)	
YELLOW - CLIENT COPY	-		12.7	Cooler Custod	Submission C	Cooling Method:				-	-					1 P2	Н	_	BER ed Sodiu		C	ON	ITA	IIN	EF	₹S			Date and Ti	Addit	Same day [E2	2 day [P2] if n	3 day [P3] If	4 day [P4] if r	Routine [R] if	
ЮРУ	Received by:		THE COURT OF STREET	Cooler Custody Seals Intact:	omments identific	NON	SAI				+															Indicate Filtered (F		For all tests with	Date and Time Required for all E&P TATs:	ional fees may apply] if received by 10an	received by 3pm M-F eceived by 3pm M-F	received by 3pm M-F	received by 3pm M-F	received by 3pm M-	Turnaround Time
	Date	FINAL SHIPMENT RECEPTION (ALS use only)	5 6 6	YES N/A	Submission Comments identified on Sample Receipt Notification:	☐ ICE ☐ ICE PACKS	SAMPLE RECEIPT DETAILS (ALS use only)				Telephone : 1 700 //	S	4		EON:	Edmonton	Environme	_								Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below	Analysi	For all tests with rush TATs requested, please contact your AM to confirm availability.	E&P TATs:	Additional fees may apply to rush requests on weekends, statutory holidays and for non-routine tests.	Same day [E2] if received by 10am M-S - 200% rush surcharge.	3 day [P2] if received by 3pm M-F - 50% rush surcharge minimum 1 day [E] if received by 3pm M-F - 100% rush surcharge minimum	3 day [P3] If received by 3pm M-F - 25% rush surcharge minimum	4 day [P4] if received by 3pm M-F - 20% rush surcharge minimum	Routine [R] if received by 3pm M-F - no surcharges apply	Turnaround Time (TAT) Requested
18	œ	T RECEPTION (THANK!	Sample Custody Seals Intact:	eipt Notification:	CKS FROZEN	ETAILS (ALS us			13 6227			20	7	FO2306150	To lot lot lot	Environmental Division	_								ared and Preserved (F	Analysis Request	lease contact your AM (dd-nam	ekends, statutory holi	rcharge.	e minimum		minimum		
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	LS use only)	LINNE COOLER LEMILENS CARE	y Seals Intact:	□ YES □	ш	e only)			1		1		+			-									/P) below		to confirm availability.	danam-yy hhanmamp	idays and for non-rou			(ALS use only)	SEIV AI S BARCOL		
_	Time:		OKEO C	☐ YES	ON O	COOLING INITIATED						1		1			-	_	PLES (and a	tine tests.			only)	76 766		
FEB 2022 FRON				□ N/A		ED		+	+	+	+	-	H	+	+		\vdash	_	NDED S			_	_	_		\dashv							LIENE	LIBE		

WHITE - LABORATORY COPY YELLOW - CLIENT COPY
REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION
WHITE - LABORATORY COPY
YELLOW - CLIENT COPY
Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

Appendix B Pond B Analytical Report October 2023

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS

Page : EO2309082 **Work Order** : 1 of 2

Amendment

Address

C-O-C number

Client Laboratory : ALS Environmental - Edmonton : Clean Harbors Environmental

Services, Inc.

Account Manager Contact : Todd Webb : Megha Walia

> : PO Box 390, 50114 Range Road 173 Address : 9450 - 17 Avenue NW Ryley AB Canada T0B4A0

Edmonton AB Canada T6N 1M9

Telephone : 780 663 2513 Telephone : +1 780 413 5227 **Project** Date Samples Received : Pond B Oct 5,2023 : 05-Oct-2023 14:29 PO : 0000236720 **Date Analysis** : 05-Oct-2023

Commenced

Issue Date : 12-Oct-2023 12:40

Sampler : TW

Site : Table 4.3B Chemistry E022-CHES100-008 Quote number

No. of samples received : 1 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Daniel Nguyen	Lab Assistant	Metals, Edmonton, Alberta	
Leah Yee	Lab Assistant	Inorganics, Edmonton, Alberta	
Michelle Schroder	Laboratory Analyst	Inorganics, Edmonton, Alberta	
Ping Yeung	Team Leader - Inorganics	Inorganics, Edmonton, Alberta	
Saron Gebremariam	Lab Assistant	Inorganics, Edmonton, Alberta	
Shruti Mudliar	Lab Analyst	Inorganics, Edmonton, Alberta	

Page : 2 of 2

Work Order : EO2309082 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B Oct 5,2023

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Measurement Uncertainty: The reported uncertainties in this report are expanded uncertainties calculated using a coverage factor of 2, which gives a level of confidence of approximately 95%.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Unit	Description
mg/L	milligrams per litre
pH units	pH units

>: greater than.

<: less than.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical Results

EO2309082-001

Sub-Matrix: Water Client sample ID: Pond B

(Matrix: Water) Client sampling date / time: 05-Oct-2023 10:00

Analyte	CAS Number	Result	LOR	Unit	Method/Lab	Prep Date	Analysis Date	QCLot
Physical Tests								
pH		8.10	0.10	pH units	E108/EO	06-Oct-2023	06-Oct-2023	1173025
Solids, total dissolved [TDS]		630	20	mg/L	E162/EO	-	06-Oct-2023	1172279
Solids, total suspended [TSS]		22.0	3.0	mg/L	E160/EO	-	06-Oct-2023	1172267
Anions and Nutrients								
Ammonia, total (as N)	7664-41-7	2.62	0.100	mg/L	E298/EO	05-Oct-2023	05-Oct-2023	1171000
Chloride	16887-00-6	13.3	0.50	mg/L	E235.CI/EO	05-Oct-2023	05-Oct-2023	1171075
Sulfate (as SO4)	14808-79-8	231	0.30	mg/L	E235.SO4/EO	05-Oct-2023	05-Oct-2023	1171071
Total Metals								
Sodium, total	7440-23-5	148	0.050	mg/L	E420/EO	06-Oct-2023	06-Oct-2023	1172199
Aggregate Organics								
Chemical oxygen demand [COD]		54	10	mg/L	E559-L/EO	-	05-Oct-2023	1171401

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **EO2309082** Page : 1 of 7

Amendment :1

Client : Clean Harbors Environmental Services, Inc. Laboratory : ALS Environmental - Edmonton

Contact :Todd Webb Account Manager : Megha Walia

Address : PO Box 390, 50114 Range Road 173 Address : 9450 - 17 Avenue NW

Edmonton, Alberta Canada T6N 1M9

 Telephone
 : 780 663 2513
 Telephone
 : +1 780 413 5227

 Project
 : Pond B Oct 5,2023
 Date Samples Received
 : 05-Oct-2023 14:29

 PO
 : 0000236720
 Issue Date
 : 12-Oct-2023 12:37

C-O-C number : ----Sampler : TW

Site : Table 4.3B Chemistry
Quote number : EO22-CHES100-008

No. of samples received :1

No. of samples analysed :1

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

Rvlev AB Canada T0B4A0

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

<u>No</u> Quality Control Sample Frequency Outliers occur.

Page: 3 of 7

Work Order : EO2309082 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B Oct 5,2023

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					E	valuation: ≭ = l	Holding time exce	edance ; 🛚	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Aggregate Organics : Chemical Oxygen Demand by Colourimetry (Low Level)										
Amber glass total (sulfuric acid)										
Pond B	E559-L	05-Oct-2023					05-Oct-2023	28 days	0 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)	F000	05.0.4.0000	05.0 1.0000				05.01.000	00.1		
Pond B	E298	05-Oct-2023	05-Oct-2023	28	0 days	✓	05-Oct-2023	28 days	0 days	✓
				days						
Anions and Nutrients : Chloride in Water by IC										
HDPE Pond B	E235.CI	05-Oct-2023	05-Oct-2023	00	0 days	√	05-Oct-2023	28 days	0 days	✓
POILU B	L233.01	03-001-2023	05-06-2025	28 days	0 days	•	05-001-2025	20 uays	0 uays	Y
				uays						
Anions and Nutrients : Sulfate in Water by IC HDPE				<u> </u>	<u> </u>			<u> </u>		
Pond B	E235.SO4	05-Oct-2023	05-Oct-2023	28	0 days	✓	05-Oct-2023	28 days	0 days	✓
				days	,-				, -	
Physical Tests : pH by Meter										
HDPE										
Pond B	E108	05-Oct-2023	06-Oct-2023	0.25	27 hrs	×	06-Oct-2023	0.25	28 hrs	×
				hrs		EHTR-FM		hrs		EHTR-FM
Physical Tests : TDS by Gravimetry										
HDPE										
Pond B	E162	05-Oct-2023					06-Oct-2023	7 days	1 days	✓
Physical Tests : TSS by Gravimetry										
HDPE										
Pond B	E160	05-Oct-2023					06-Oct-2023	7 days	1 days	✓

Page : 4 of 7

Work Order : EO2309082 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B Oct 5,2023

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Wideliki Tracoi						diddion.	i lolaling tilllo oxtooc	, ,		riolaning riii
Analyte Group	Method	Sampling Date	Exti	eparation		Analysis				
Container / Client Sample ID(s)			Preparation	Holding	Holding Times Eval		Analysis Date	Holding	Holding Times	
			Date	Rec	Actual			Rec	Actual	
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
Pond B	E420	05-Oct-2023	06-Oct-2023	7 hrs	24 hrs	×	06-Oct-2023	7 hrs	24 hrs	×
						EHTL				EHTL

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

Rec. HT: ALS recommended hold time (see units).

Page : 5 of 7

Work Order : EO2309082 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B Oct 5,2023

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water		Evaluati	on: × = QC freque	ency outside sp	ecification; ✓ = 0	QC frequency wit	thin specification
Quality Control Sample Type				ount		Frequency (%,)
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Ammonia by Fluorescence	E298	1171000	1	20	5.0	5.0	✓
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	1171401	1	20	5.0	5.0	✓
Chloride in Water by IC	E235.CI	1171075	1	17	5.8	5.0	✓
pH by Meter	E108	1173025	1	1	100.0	5.0	✓
Sulfate in Water by IC	E235.SO4	1171071	1	17	5.8	5.0	✓
TDS by Gravimetry	E162	1172279	1	12	8.3	5.0	✓
Total Metals in Water by CRC ICPMS	E420	1172199	1	1	100.0	5.0	✓
TSS by Gravimetry	E160	1172267	1	1	100.0	5.0	✓
Laboratory Control Samples (LCS)							
Ammonia by Fluorescence	E298	1171000	1	20	5.0	5.0	1
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	1171401	1	20	5.0	5.0	√
Chloride in Water by IC	E235.CI	1171075	1	17	5.8	5.0	√
pH by Meter	E108	1173025	1	1	100.0	5.0	1
Sulfate in Water by IC	E235.SO4	1171071	1	17	5.8	5.0	✓
TDS by Gravimetry	E162	1172279	1	12	8.3	5.0	1
Total Metals in Water by CRC ICPMS	E420	1172199	1	1	100.0	5.0	✓
TSS by Gravimetry	E160	1172267	1	1	100.0	5.0	✓
Method Blanks (MB)							
Ammonia by Fluorescence	E298	1171000	1	20	5.0	5.0	1
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	1171401	1	20	5.0	5.0	1
Chloride in Water by IC	E235.CI	1171075	1	17	5.8	5.0	1
Sulfate in Water by IC	E235.SO4	1171071	1	17	5.8	5.0	1
TDS by Gravimetry	E162	1172279	1	12	8.3	5.0	✓
Total Metals in Water by CRC ICPMS	E420	1172199	1	1	100.0	5.0	✓
TSS by Gravimetry	E160	1172267	1	1	100.0	5.0	✓
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	1171000	1	20	5.0	5.0	✓
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	1171401	1	20	5.0	5.0	√
Chloride in Water by IC	E235.CI	1171075	1	17	5.8	5.0	✓
Sulfate in Water by IC	E235.SO4	1171071	1	17	5.8	5.0	✓
Total Metals in Water by CRC ICPMS	E420	1172199	1	1	100.0	5.0	1

Page : 6 of 7

Work Order : EO2309082 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B Oct 5,2023

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C). For high accuracy test results,
	ALS Environmental - Edmonton			pH should be measured in the field within the recommended 15 minute hold time.
TSS by Gravimetry	E160	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the
	ALS Environmental -			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
	Edmonton			brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight,
	ALS Environmental -			with gravimetric measurement of the residue.
Ohlarida in Water hu IO	Edmonton	Water	EDA 200 4 (*** - 4)	
Chloride in Water by IC	E235.CI	water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	ALS Environmental -			
Sulfate in Water by IC	Edmonton	Water	EPA 300.1 (mod)	
Sunate III Water by IC	E235.SO4	vvalei	EFA 300.1 (IIIou)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	ALS Environmental -			
Ammonia by Fluorescence	Edmonton E298	Water	Method Fialab 100,	Ammonia in water is determined by automated continuous flow analysis with membrane
7 minoria by Fidoresserioe		Water	2018	diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde).
	ALS Environmental - Edmonton			This method is approved under US EPA 40 CFR Part 136 (May 2021)
Total Metals in Water by CRC ICPMS	E420	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
	ALS Environmental -		(mod)	Collision//Ceaction Cell ICF W.S.
	Edmonton			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered
Chemical Oxygen Demand by Colourimetry	E559-L	Water	APHA 5220 D (mod)	by this method. Samples are analyzed using the closed reflux colourimetric method.
(Low Level)	L000-L		(
	ALS Environmental -			
	Edmonton			
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
	ALS Environmental -			
	Edmonton			

Page : 7 of 7

Work Order : EO2309082 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B Oct 5,2023

ALS Canada Ltd.

QUALITY CONTROL REPORT

Work Order : EO2309082

Amendment : 1

Client ; Clean Harbors Environmental Services, Inc.

Contact : Todd Webb

Address : PO Box 390, 50114 Range Road 173

Ryley AB Canada T0B4A0

Telephone

Project : Pond B Oct 5,2023 PO : 0000236720

C-O-C number : ----

Sampler : TW 780 663 2513

Site : Table 4.3B Chemistry
Quote number : EO22-CHES100-008

No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 6

Laboratory : ALS Environmental - Edmonton

Account Manager : Megha Walia

Address : 9450 - 17 Avenue NW

Edmonton, Alberta Canada T6N 1M9

Telephone :+1 780 413 5227

Date Samples Received :05-Oct-2023 14:29

Date Analysis Commenced : 05-Oct-2023

Issue Date : 12-Oct-2023 12:40

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Daniel Nguyen	Lab Assistant	Edmonton Metals, Edmonton, Alberta	
Leah Yee	Lab Assistant	Edmonton Inorganics, Edmonton, Alberta	
Michelle Schroder	Laboratory Analyst	Edmonton Inorganics, Edmonton, Alberta	
Ping Yeung	Team Leader - Inorganics	Edmonton Inorganics, Edmonton, Alberta	
Saron Gebremariam	Lab Assistant	Edmonton Inorganics, Edmonton, Alberta	
Shruti Mudliar	Lab Analyst	Edmonton Inorganics, Edmonton, Alberta	

Page : 2 of 6

Work Order : EO2309082 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B Oct 5,2023

ALS

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page : 3 of 6

Work Order: EO2309082 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B Oct 5,2023

ALS

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water							Labora	tory Duplicate (Dl	JP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 1172267)										
EO2309082-001	Pond B	Solids, total suspended [TSS]		E160	3.0	mg/L	22.0	20.2	1.8	Diff <2x LOR	
Physical Tests (QC	Lot: 1172279)										
EO2308941-003	Anonymous	Solids, total dissolved [TDS]		E162	20	mg/L	550	554	0.724%	20%	
Physical Tests (QC	Lot: 1173025)										
EO2309082-001	Pond B	рН		E108	0.10	pH units	8.10	8.16	0.738%	3%	
Anions and Nutrient	ts (QC Lot: 1171000)										
FC2302826-007	Anonymous	Ammonia, total (as N)	7664-41-7	E298	0.0250	mg/L	0.736	0.741	0.609%	20%	
Anions and Nutrient	ts (QC Lot: 1171071)										
EO2309077-028	Anonymous	Sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	<0.30	<0.30	0	Diff <2x LOR	
Anions and Nutrient	ts (QC Lot: 1171075)										
EO2309077-028	Anonymous	Chloride	16887-00-6	E235.CI	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
Total Metals (QC Lo	ot: 1172199)										
EO2309082-001	Pond B	Sodium, total	7440-23-5	E420	0.050	mg/L	148	147	0.445%	20%	
Aggregate Organics	(QC Lot: 1171401)										
EO2308966-001	Anonymous	Chemical oxygen demand [COD]		E559-L	10	mg/L	23	27	3	Diff <2x LOR	

Page : 4 of 6

Work Order: EO2309082 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B Oct 5,2023

ALS

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water

Analyte	CAS Number I	Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 1172267)						
Solids, total suspended [TSS]	E	E160	3	mg/L	<3.0	
Physical Tests (QCLot: 1172279)						
Solids, total dissolved [TDS]	E	E162	10	mg/L	<10	
Anions and Nutrients (QCLot: 1171000)						
Ammonia, total (as N)	7664-41-7 E	E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 1171071)						
Sulfate (as SO4)	14808-79-8 E	E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 1171075)						
Chloride	16887-00-6 E	E235.CI	0.5	mg/L	<0.50	
Total Metals (QCLot: 1172199)						
Sodium, total	7440-23-5 E	E420	0.05	mg/L	<0.050	
Aggregate Organics (QCLot: 1171401)						
Chemical oxygen demand [COD]	E	E559-L	10	mg/L	<10	

Page : 5 of 6

Work Order: EO2309082 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B Oct 5,2023

ALS

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water						Laboratory Co	ontrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 1172267)									
Solids, total suspended [TSS]		E160	3	mg/L	150 mg/L	102	85.0	115	
Physical Tests (QCLot: 1172279)									
Solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	96.8	85.0	115	
Physical Tests (QCLot: 1173025)									
рН		E108		pH units	6 pH units	99.5	97.0	103	
Anions and Nutrients (QCLot: 1171000)									
Ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	97.4	85.0	115	
Anions and Nutrients (QCLot: 1171071)									
Sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	102	90.0	110	
Anions and Nutrients (QCLot: 1171075)									
Chloride	16887-00-6	E235.CI	0.5	mg/L	100 mg/L	99.1	90.0	110	
Total Metals (QCLot: 1172199)									
Sodium, total	7440-23-5	E420	0.05	mg/L	50 mg/L	95.0	80.0	120	
Aggregate Organics (QCLot: 1171401)			10				0.5.0		
Chemical oxygen demand [COD]		E559-L	10	mg/L	100 mg/L	108	85.0	115	

Page : 6 of 6

Work Order: EO2309082 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B Oct 5,2023

ALS

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water							Matrix Spik	re (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Anions and Nutri	ents (QCLot: 1171000)									
FC2302826-007	Anonymous	Ammonia, total (as N)	7664-41-7	E298	ND mg/L	0.1 mg/L	ND	75.0	125	
Anions and Nutri	ents (QCLot: 1171071)									
EO2309077-028	Anonymous	Sulfate (as SO4)	14808-79-8	E235.SO4	95.3 mg/L	100 mg/L	95.3	75.0	125	
Anions and Nutri	ents (QCLot: 1171075)									
EO2309077-028	Anonymous	Chloride	16887-00-6	E235.Cl	94.0 mg/L	100 mg/L	94.0	75.0	125	
Total Metals (QC	Lot: 1172199)									
EO2309082-001	Pond B	Sodium, total	7440-23-5	E420	ND mg/L	2 mg/L	ND	70.0	130	
Aggregate Organ	ics (QCLot: 1171401)									
EO2308967-001	Anonymous	Chemical oxygen demand [COD]		E559-L	102 mg/L	100 mg/L	102	75.0	125	

Page 으

Canada Toll Free: 1 800 668 9878

Released by:	Ale samples T	YES TOTAL	Are samples taken	Driiwiild **	Deinking W				1	- BILDING			Pond B	(ALS use only)	n nample #	ALS Lab Work Orde	LSD: Table	PO / AFE:		ALS Account # / Quote #:		Contact: Stepha	Company: Clean	Сорус	Invoice To Same	<u></u>		Street:		Phone:	FT	×	Closs		
2 1	NO NO	man consumption/ use?	rom a Regulated Dvv System.	and the state of t	Drinking Water (DW) Samples (client use)								T.B.	(This description will appear on the report)	Sample Identification and/or Coordinates	ALS Lab Work Order # (ALS use only): CO 7 50 0 0	Table 4.3B Chemistry		Pond B Oct 5, 2023		Project Information	Stephanie Dennis	Clean Harbors Canada	bou] YES	Bonnet To YES NO	5 8		DO Box 390 50114 Range Road 173	Company address below will appear on the final report	7780) 663-2513	Clean naibuis Canada	arbors Canada	Contact and company name below will appear on the final report	
5-Oct-23 Time: Received by		Analyze as per Table 4.3B chemistry only (attached), no bioassays	please Koon-	20.0	Motes / About	Notes I Specify Limits for resi								r on the report)	or Coordinates		All & Contact:	Location:	Requisitioner:	Major/Minor Code:	AFE/Cost Center:		Email 2	Email 1 or Fax	Select Invoice Distribution:		Email 3	Email 2	Email 1 or Fax	Select Distribution.	Compare Results	Merge QC/QCI H			
100000000000000000000000000000000000000	INITIAL SHIPMENT RECEPTION (ALS use only)	ry only (attached), no bloassays	Diography		(Excel COC only)	Notice I Specify Limits for result evaluation by selecting from drop-down below							+	5-Oct-23 10'00	(dd-mmm-yy) (hh:mm)	Date Time	Megha Walia Sampler:			Routing Code:	PO#	Oil and Gas Required Fields (Cilette user	in all all falls	Email 1 or Fax Dennis.Stephanie@cleannarpois.com	istribution: EMALL I FINE	Necipions	Docinients	yuna.stali@cicaiiia	Email 1 or Fax Webb.todd@dcanharbors.com	n. Cold@cleanharbors.com	EMAIL MAIL		Sign Coa Tyes	□ POF □ EXCEL □	١
Date: 1/2/3	PTION (ALS use only)					rop-down below								O Surface Water		Sample Type UM	Todd Webb	1	OF							□ FAX				ll sa	FIL	10		EDD (DIGITAL)	
YELLOW - CLIENT COPY YELLOW - CLIENT COPY	Received by:	13-2	INITIAL COOLER TEMPERATURES °C	Cooler Custody Seals Intact: YES N/A Sar	ments identified on Sample Recei	Cooling Method: NONE ICE ICE PACKS	SAMPLE RECEIPT DETAILS (ALS use only)							n	_	UM Abble 4.	_	_						-	Indicate Filtered (F), Preserved (P) or Filtered and Fi	Analysis Reque	For all tests with rush TATs requested, please volume	Date and Time Required for all E&P IAIS.	Additional fees may apply to rush requests on recommendations	Same day [E2] if received by 10am M-5 - 20070 man conveniends ste	day [E] if received by 3pm M-F - 100% rush surcharge minimum	3 day [P3] if received by 3pm M-F - 50% rush surcharge minimum	4 day [P4] If received by Spin 111.	Routine [R] if received by 3pm M-F - 20% rush surcharge minimum	THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.
	Time:	SNAI SHIPMENT RECEPTION (ALS use only)		COOLER TEMPERAT	L 1E3		1										MP		s o	_	_	_	DE			Telephone: +1 /80 413 522/				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15. アクスパ			日のいいののない	

SUSPECTED HAZARD (see I

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

WHITE - LABORATORY COPY

Environmental Division
Edmonton
Work Order Reference

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS

Page **Work Order** : EO2309217 : 1 of 2

Client Laboratory : ALS Environmental - Edmonton : Clean Harbors Environmental

Services, Inc.

Account Manager Contact : Todd Webb : Megha Walia Address

Address : PO Box 390, 50114 Range Road 173 : 9450 - 17 Avenue NW Ryley AB Canada T0B4A0

Edmonton AB Canada T6N 1M9

Telephone : 780 663 2513 Telephone : +1 780 413 5227 Date Samples Received **Project** : Pond B Oct 10,2023 : 10-Oct-2023 15:39 РО : 236720 : 11-Oct-2023 **Date Analysis**

Commenced

C-O-C number : ----Issue Date : 18-Oct-2023 15:30

Sampler : TW

Site : Table 4.3B - Oct 10 Trout, Daphnia, COD, Sheen

: EO22-CHES100-008 Quote number

No. of samples received : 1 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Amanda Powell	Account Manager	External Subcontracting, Edmonton, Alberta
Fahad Husain	Analyst	Inorganics, Edmonton, Alberta
Geoff Berg	Lab Analyst	Organics, Edmonton, Alberta

 Page
 :
 2 of 2

 Work Order
 :
 EO2309217

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B Oct 10,2023

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Measurement Uncertainty: The reported uncertainties in this report are expanded uncertainties calculated using a coverage factor of 2, which gives a level of confidence of approximately 95%.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Unit	Description
-	no units
mg/L	milligrams per litre

>: greater than.

<: less than.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Sample Comments

Sample	Client Id	Comment
EO2309217-001	Pond B	*Manual remark*Used preserved bottle used for visble sheen. Results should be
		reliable.

Analytical Results

EO2309217-001

Sub-Matrix:**Water** Client sample ID: Pond B

(Matrix: Water) Client sampling date / time: 10-Oct-2023

Analyte	CAS Number	Result	LOR	Unit	Method/Lab	Prep Date	Analysis Date	QCLot
Bioassays								
Daphnia magna LC50		See attached	-	-	DAP-LC50-48/3D	-	11-Oct-2023	-
Trout bioassay LC50		See attached	-	-	TRT-LC50-96/3D	-	12-Oct-2023	-
Aggregate Organics								
Chemical oxygen demand [COD]		47	10	mg/L	E559-L/EO	-	12-Oct-2023	1181294
Oil & grease (visible sheen)		Absent	-	-	E566/EO	-	11-Oct-2023	-

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **EO2309217** Page : 1 of 5

Client : Clean Harbors Environmental Services, Inc. Laboratory : ALS Environmental - Edmonton

Contact : Todd Webb Account Manager : Megha Walia

Address : PO Box 390, 50114 Range Road 173 Address : 9450 - 17 Avenue NW

Edmonton, Alberta Canada T6N 1M9

 Telephone
 :780 663 2513
 Telephone
 :+1 780 413 5227

 Project
 :Pond B Oct 10,2023
 Date Samples Received
 : 10-Oct-2023 15:39

 PO
 : 236720
 Issue Date
 : 18-Oct-2023 15:33

PO : 236720 Issue Date
C-O-C number :----

Site : Table 4.3B - Oct 10 Trout, Daphnia, COD, Sheen

Ryley AB Canada T0B4A0

Quote number : EO22-CHES100-008

:TW

No. of samples received :1

No. of samples analysed :1

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Sampler

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers: Analysis Holding Time Compliance (Breaches) ■ No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples • No Quality Control Sample Frequency Outliers occur.

Page : 3 of 5 Work Order : EO2309217

Matrix: Water

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B Oct 10,2023

Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

12-Oct-2023

5 days 2 days

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Analyte Group : Analytical Method	Method	Sampling Date	Ext	raction / Pr	eparation		Analysis				
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval	
			Date	Rec	Actual			Rec	Actual	<u> </u>	
Aggregate Organics : Chemical Oxygen Demand by Colourimetry (Low Leve	el)										
Amber glass total (sulfuric acid) Pond B	E559-L	10-Oct-2023					12-Oct-2023	28 days	2 days	✓	
Aggregate Organics : Oil & Grease by Visible Sheen											
Amber glass (hydrochloric acid) Pond B	E566	10-Oct-2023					11-Oct-2023	28 days	1 days	√	
Bioassays : Survival/LC50 Daphnia Magna 48 hours											
HDPE Pond B	DAP-LC50-48	10-Oct-2023					11-Oct-2023	5 days	2 days	✓	
Bioassays : Survival/LC50 Rainbow Trout (96 hours)											
HDPE Pail											

10-Oct-2023

TRT-LC50-96

Legend & Qualifier Definitions

Pond B

Rec. HT: ALS recommended hold time (see units).

Page : 4 of 5 Work Order : EO2309217

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B Oct 10,2023

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water		Evaluation	n: 🗴 = QC freque	ency outside spe	ecification; ✓ = 0	QC frequency wit	hin specification.
Quality Control Sample Type			Co	unt		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	1181294	1	20	5.0	5.0	✓
Laboratory Control Samples (LCS)							
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	1181294	1	20	5.0	5.0	✓
Method Blanks (MB)							
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	1181294	1	20	5.0	5.0	✓
Matrix Spikes (MS)							
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	1181294	1	20	5.0	5.0	✓

Page : 5 of 5 Work Order : E02309217

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B Oct 10,2023

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Survival/LC50 Daphnia Magna 48 hours	DAP-LC50-48	Water	EPS1/RM/14	See attached report.
	Bureau Veritas			
	(Edmonton) - 9331 -			
	48th Street Edmonton			
	Alberta Canada T6B			
	2R4			
Chemical Oxygen Demand by Colourimetry	E559-L	Water	APHA 5220 D (mod)	Samples are analyzed using the closed reflux colourimetric method.
(Low Level)				
	ALS Environmental -			
	Edmonton			
Oil & Grease by Visible Sheen	E566	Water	Alberta Energy	Use a qualitivative visual observation of rainbow sheen to determine the presence or
			Regulator, Drilling	absence of oil and grease on water.
	ALS Environmental -		waste Management,	
	Edmonton		Directive 050, July	
			2016	
Survival/LC50 Rainbow Trout (96 hours)	TRT-LC50-96	Water	EPS1/RM/13	See attached report.
	Bureau Veritas			
	(Edmonton) - 9331 -			
	48th Street Edmonton			
	Alberta Canada T6B			
	2R4			

ALS Canada Ltd.

QUALITY CONTROL REPORT

Work Order : EO2309217

Client ; Clean Harbors Environmental Services, Inc.

Contact : Todd Webb

Address : PO Box 390, 50114 Range Road 173

Ryley AB Canada T0B4A0

Telephone

Project : Pond B Oct 10,2023

PO : 236720 C-O-C number : ____

Sampler : TW

780 663 2513

Site : Table 4.3B - Oct 10 Trout, Daphnia, COD, Sheen

Quote number : EO22-CHES100-008

No. of samples received : 1

No. of samples analysed : 1

Page : 1 of 3

Laboratory ; ALS Environmental - Edmonton

Account Manager : Megha Walia

Address : 9450 - 17 Avenue NW

Edmonton, Alberta Canada T6N 1M9

Telephone :+1 780 413 5227

Date Samples Received : 10-Oct-2023 15:39

Date Analysis Commenced : 11-Oct-2023

Issue Date : 18-Oct-2023 15:31

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Amanda Powell	Account Manager	Bureau Veritas (Edmonton) External Subcontracting, Edmonton, Alberta
Fahad Husain	Analyst	Edmonton Inorganics, Edmonton, Alberta
Geoff Berg	Lab Analyst	Edmonton Organics, Edmonton, Alberta

Page : 2 of 3 Work Order : EO2309217

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B Oct 10,2023

ALS

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water							Labora	tory Duplicate (D	JP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Aggregate Organics	(QC Lot: 1181294)										
EO2309209-001	Anonymous	Chemical oxygen demand [COD]		E559-L	10	mg/L	59	61	2	Diff <2x LOR	

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water

Analyte	CAS Number M	Method	LOR	Unit	Result	Qualifier
Aggregate Organics (QCLot: 118129	4)					
Chemical oxygen demand [COD]	E	E559-L	10	mg/L	<10	

Page : 3 of 3 Work Order : EO2309217

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B Oct 10,2023

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water					Laboratory Co	ontrol Sample (LCS)	Report		
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Aggregate Organics (QCLot: 1181294)									
Chemical oxygen demand [COD]		E559-L	10	mg/L	100 mg/L	107	85.0	115	

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water	Sub-Matrix: Water				Matrix Spike (MS) Report					
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
ID				<u>'</u>						
Aggregate Organ	ics (QCLot: 1181294)									
EO2309209-002	Anonymous	Chemical oxygen demand [COD]		E559-L	105 mg/L	100 mg/L	105	75.0	125	

Your P.O. #: EO2309217 Your Project #: EO2309217 Your C.O.C. #: 146520

Attention: ALS Reporting Edmonton

ALS ENVIRONMENTAL Bay 7, 1313 44th ave NE CALGARY, AB CANADA T2E 6L5

Report Date: 2023/10/18

Report #: R3412319 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C381928 Received: 2023/10/11, 10:30

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Daphnia magna LC50 Multi-Concentration	1	N/A	2023/10/11	EENVSOP-00154	EPS 1 RM14 2nd ed m
Rainbow Trout LC50 Multi-Concentration	1	N/A	2023/10/12	EENVSOP-00160	EPS 1 RM13 2nd ed m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

 $Reference\ Method\ suffix\ "m"\ indicates\ test\ methods\ incorporate\ validated\ modifications\ from\ specific\ reference\ methods\ to\ improve\ performance.$

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your P.O. #: EO2309217 Your Project #: EO2309217 Your C.O.C. #: 146520

Attention: ALS Reporting Edmonton

ALS ENVIRONMENTAL
Bay 7, 1313 44th ave NE
CALGARY, AB
CANADA T2E 6L5

Report Date: 2023/10/18

Report #: R3412319

Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C381928 Received: 2023/10/11, 10:30

Encryption Key

Bureau Veritas

18 Oct 2023 14:39:40

Please direct all questions regarding this Certificate of Analysis to: Customer Solutions, Western Canada Customer Experience Team Email: customersolutionswest@bureauveritas.com Phone# (780) 577-7100

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Scott Cantwell, General Manager responsible for Alberta Environmental laboratory operations.

RESULTS OF CHEMICAL ANALYSES OF WATER

Bureau Veritas ID		CBM263	
Sampling Date		2023/10/10 00:00	
COC Number		146520	
	UNITS	EO2309217-001	QC Batch
Daphnia Magna Bioassay			
LC50	% vol/vol	ATTACHED	B148840

TOXICOLOGY (WATER)

Bureau Veritas ID		CBM263	
Sampling Date		2023/10/10 00:00	
COC Number		146520	
	UNITS	EO2309217-001	QC Batch
Rainbow Trout Bioassay			
LC50	% vol/vol	ATTACHED	B149613

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	6.0°C
Package 2	6.0°C
Package 3	5.7°C
Package 4	6.0°C
Package 5	5.0°C

Results relate only to the items tested.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Cara Shurgot, Analyst 2

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Scott Cantwell, General Manager responsible for Alberta Environmental laboratory operations.

Chain of Custody ALS Environmental - Edmonton 9450 - 17 Avenue NW Edmonton AB Canada T6N 1M9

254(5)

Destination Lab:

Bureau Veritas (Edmonton)

Address:

9331 - 48th Street Edmonton AB Canada

Work Order Number: EO2309217

Original Receipt Date/Time

Instructions Received

10/10/2023 15:39

RUSH

Relinquished By

Date/Time

Received By

Date/Time

Receipt Temp

Return as Indicated: Results: ALSEDClientServices@alsglobal.com

Invoice: ALSEDClientServices@alsglobal.com

Electronic Data: ALSEDClientServices@alsglobal.com

Attention Megha Walia

	Attention: wegna	Attention, Mogrid Main									
ALS Sample ID	Client ID	Matrix	Container Type	Test Codes	Method Description	Due Date	Sampling Date and Time	Remarks			
EO2309217-001	Pond B	Water	HDPE	DAP-LC50-48	Survival/LC50 Daphnia Magna 48 hours	18-10-2023	10/10/2023 00:00				
EO2309217-001	Pond B	Water	HDPE			18-10-2023	10/10/2023 00:00				
EO2309217-001	Pond B	Water	HDPE Pail	TRT-LC50-96	Survival/LC50 Rainbow Trout (96 hours)	18-10-2023	10/10/2023 00:00				
EO2309217-001	Pond B	Water	HDPE Pail			18-10-2023	10/10/2023 00:00				
EO2309217-001	Pond B	Water	HDPE Pail			18-10-2023	10/10/2023 00:00				
E02309217-001	Pond B	Water	HDPE Pail			18-10-2023	10/10/2023 00:00				

76Ave 4 pails (381920)
2 bottles
2 pej: ww b
2023/10/11 10:30
CER ACTIF

Temp. See ACTR

RESULTS OF DAPHNIA MAGNA LC50 MULTI-CONCENTRATION

Client: 70036 ALS ENVIRONMENTAL, CALGARY Job Number: C381928 Client Project Name & Number: EO2309217 Sample Number: CBM263-02

Test Result:

48 hrs LC50 % vol/vol (95% CL): >100% (N/A) Statistical Method: Visual

EO2309217-001 Sample Matrix: Water Sample Name:

Description: Yellow, clear Sample Prior to Analysis:

Sample Collected: Oct 10, 2023 Sampling Method: 7.9 N/A pH: 20 °C Sample Collected By: N/A Site Collection: N/A Temperature: Sample Received: Oct 11, 2023 10:30 AM Volume Received: 1L Dissolved Oxygen: 10.7 mg/L Analysis Start: Oct 11, 2023 02:43 PM Avg Temp Arrival: 6°C Sample Conductance: 818 µS/cm

Hardness: 180 mg CaCO₃/L End: Oct 13, 2023 01:49 PM Storage: 2-6°C

Concentration	Temperature (°C)	pH (pH)	Conductivity (uS/cm)	Dissolved Oxygen (mg/L)	Mortality (#)	Mortality (%)	Immobility (#)	Immobility (%)	Temperature (°C)	pH (pH)	Conductivity (uS/cm)	Dissolved Oxygen (mg/L)
% vol/vol	Start	Start	Start	Start	24 hrs	24 hrs	24 hrs	24 hrs	48 hrs	48 hr	48 hrs	48 hrs
0	20	8.1	300	8.1	0	0	0	0	21	8.1	311	8.3
6.25	20	8.0	332	8.3	0	0	0	0	20	8.0	346	8.2
12.5	20	8.0	360	8.3	0	0	0	0	20	7.9	386	7.9
25	20	8.0	416	8.4	0	0	0	0	20	8.1	423	8.0
50	20	8.0	541	8.6	0	0	0	0	21	8.0	556	7.8
100	20	7.9	824	9.2	0	0	0	0	20	8.1	845	7.2

Concentration	Mortality (#)	Mortality (%)	Immobility (#)	Immobility (%)
% vol/vol	48 hrs	48 hrs	48 hrs	48 hrs
0	0	0	0	0
6.25	0	0	0	0
12.5	0	0	0	0
25	0	0	0	0
50	0	0	0	0
100	0	0	0	0

Comments: None

Culture/Control/Dilution Water: City of Edmonton dechlorinated tap water

Hardness: 180 mg/L CaCO₃ Other parameters available on request.

Test Conditions 0,6.25,12.5,25,50,100 (% vol/vol) Test concentration:

Organisms per Vessel: 10 Pre-aeration Time: 30 min Rate of Pre-aeration: 25-50 mL/min/L

60 20 ± 2 °C Total # of Organisms Used: Test Temperature : Test Hardness Adjusted: No Test Volume: 150 mL Vessel Volume: 200 mL Test pH Adjusted: No

Loading Density: 15.0 mL/Daphnia Photoperiod: 16:8 (light: dark)

Daphnia magna Source: In House Culture Test Organism:

Average Brood Size: Age at Test Initiation: <24 hrs 36.9 % Mortality within 7 days: Culture Photoperiod: 16:8 (light: dark) 1.7 Culture Temperature: 20 ± 2 °C Time To First Brood: 9 Days **Culture Diet**

Pseudokirchnriella and YTC at a ratio of 2 mL/L of culture daily. New cultures weekly, 63 daphnids

distributed into 6 culture vessels and 3 reproductive vessels.

RESULTS OF DAPHNIA MAGNA LC50 MULTI-CONCENTRATION

Client:70036ALS ENVIRONMENTAL, CALGARYJob Number:C381928Client Project Name & Number:E02309217Sample Number:CBM263-02

Reference chemical:Sodium ChlorideTest Date:Sep 29, 2023Test Endpoint 48 hrs LC50 (95% confidence interval):6.96 (5.70, 8.50)g/LStatistical Method:BinomialHistorical Mean LC50 (warning limits):6.01 (4.52, 8.00) g/LConcentration: 0,1.71,2.56,3.82,5.7,8.5 g/L

<u>Test Method</u> EPS 1/RM/14

Method Deviations: None

Note: The results contained in this report refer only to the testing of the sample submitted. Bureau Veritas is accredited to ISO/IEC 17025 for

specific parameters on scopes of accreditation, including the toxicity parameters reported herein. The conductivity, dissolved oxygen and pH data contained within the toxicity report are provided for information purposes and are not individually accredited parameters. This report

may not be reproduced, except in its entirety, without the written approval of the laboratory.

Analyst: Natasha Lloyd, Rayane Gama Santos, Svetlana Sofrenovic, Tami Horvath

Verified By: Cara Shurgot, Analyst 2 Date: Oct 18, 2023 12:31 PM

RESULTS OF RAINBOW TROUT LC50 MULTI-CONCENTRATION

Client: 70036 ALS ENVIRONMENTAL, CALGARY Job Number: C381928

Client Project Name & Number: EO2309217

Test Result:

96 hrs LC50 % vol/vol (95% CL): >100% (N/A) Statistical Method: Visual

Sample Name :EO2309217-001Sample Matrix :WaterDescription:Yellow, clearSample Number:CBM263-01

Sample Collected: Oct 10, 2023 Sampling Method: N/A Site Collection: N/A

Sample Collected By: N/A Volume Received: 60 L Avg Temp Arrival: 6 °C Storage: 2-6°C

Sample Received: Oct 11, 2023 10:30 AM pH: 7.9 Dissolved Oxygen: 10.6 mg/L Analysis Start: Oct 12, 2023 11:00 AM Temperature: 14 °C Sample Conductance: 706 μS/cm

Concentration	Temperature (°C)	pH (pH)	Conductivity (uS/cm)	Dissolved Oxygen (mg/L)	Mortality (#)	Mortality (%)	Atypical Behaviour (#)	Atypical Behaviour (%)	Mortality (#)	Mortality (%)	Atypical Behaviour (#)	Atypical Behaviour (%)
% vol/vol	Start	Start	Start	Start	24 hrs	24 hrs	24 hrs	24 hrs	48 hrs	48 hrs	48 hrs	48 hrs
0	14	7.9	277	9.4	0	0	0	0	0	0	0	0
6.25	14	7.9	318	9.4	0	0	0	0	0	0	0	0
12.5	14	7.8	329	9.6	0	0	0	0	0	0	0	0
25	14	7.8	383	9.7	0	0	0	0	0	0	0	0
50	14	7.9	486	9.7	0	0	0	0	0	0	0	0
100	13	7.9	703	9.9	0	0	0	0	0	0	0	0

Concentration	Mortality (#)	Mortality (%)	Atypical Behaviour (#)	Atypical Behaviour (%)	Temperature (°C)	pH (pH)	Conductivity (uS/cm)	Dissolved Oxygen (mg/L)	Mortality (#)	Mortality (%)	Atypical Behaviour (#)	Atypical Behaviour (%)
% vol/vol	72 hrs	72 hrs	72 hrs	72 hrs	96 hrs	96 hr	96 hrs	96 hrs	96 hrs	96 hrs	96 hrs	96 hrs
0	0	0	0	0	15	7.7	280	9.5	0	0	0	0
6.25	0	0	0	0	14	7.7	315	9.5	0	0	0	0
12.5	0	0	0	0	14	7.7	325	9.4	0	0	0	0
25	0	0	0	0	14	7.8	380	9.6	0	0	0	0
50	0	0	0	0	14	7.5	488	8.4	0	0	0	0
100	0	0	0	0	14	7.8	712	9.0	0	0	0	0

Comments: None

<u>Culture/Control/Dilution Water</u>

City of Edmonton dechlorinated tap water

Hardness: 170 mg/L CaCO₃ Other parameters available on request.

Test Conditions Test concentration: 0,6.25,12.5,25,50,100 (% vol/vol)

Organisms per Vessel : 10 Test Temperature : 15 ± 1 °C Solution Depth : >15 cm

Total # of Organisms Used: 60 Pre-aeration Time: 120 min. Rate of Aeration 6.5±1 mL/min/L

Test Volume : 20 L Vessel Volume : 38L Test pH Adjusted: No

Loading Density: 0.2 g/L Photoperiod: 16:8 (light: dark)

<u>Test Organism</u>: Rainbow Trout (Oncorhynchus mykiss) Source: LSL Trout Hatchery

Culture Temperature : 15 ± 2 °C Weight (Mean) +- SD : 0.4 ± 0.1 g Length (Mean) +- SD : 3.63 ± 0.23 cm Culture Water Renewal : ≥ 1.0 L/min/kg fish Weight (Range) : 0.3 - 0.5 g Length (Range) : 3.30 - 4.00 cm

Culture Photoperiod: 16:8 (light: dark) % Mortality within 7 days: 0.4%

Feeding rate and frequency: daily: 1-5% biomass of trout. Acclimation Time: >14 days

Reference chemical:PhenolTest Date:Oct 09, 2023Test Endpoint 96 hrs LC50 (95% confidence interval):7.94 (<7.59, 8.65)mg/L</td>Statistical Method:Probit

Historical Mean LC50 (warning limits) : 8.96 (8.06, 9.95) mg/L Concentration : 0,7.59,9.15,11,13.3,16 mg/L

RESULTS OF RAINBOW TROUT LC50 MULTI-CONCENTRATION

Client:70036ALS ENVIRONMENTAL, CALGARYJob Number:C381928Client Project Name & Number:E02309217Sample Number:CBM263-01

Test Method EPS 1/RM/13

Method Deviations: The control chart result for this reference toxicant test was outside of 2SD limits. A check of all acclimation and

test conditions was performed, and all requirements were met. The temperature of the 100% concentration was 13°C at test initiation which is below the minimum temperature of 14°C as specified in the reference method. All

other culture and test quality indicators met requirements.

Note: The results contained in this report refer only to the testing of the sample submitted. Bureau Veritas is accredited to ISO/IEC 17025 for

specific parameters on scopes of accreditation, including the toxicity parameters reported herein. The conductivity, dissolved oxygen and pH data contained within the toxicity report are provided for information purposes and are not individually accredited parameters. This report

may not be reproduced, except in its entirety, without the written approval of the laboratory.

Analyst: Cara Shurgot, Kyle Monaghan, Svetlana Sofrenovic, Tami Horvath

Verified By: Cara Shurgot, Analyst 2 Date: Oct 18, 2023 02:32 PM

ALS ENVIRONMENTAL

Client Project #: EO2309217

Report Date: 2023/10/18

Bureau Veritas Job Number: C381928

Your P.O. #: EO2309217

RESULTS OF CHEMICAL ANALYSES OF WATER

Bureau Veritas ID		CBM263	
Sampling Date		10/10/2023	
COC Number		146520	
	UNITS	EO2309217-001	QC Batch
Daphnia Magna Bioassay			
LC50	% vol/vol	ATTACHED	B148840

RDL = Reportable Detection Limit

N/A = Not Applicable

Results relate only to the items tested.

Street: City/Province:

Ryley, AB T0B 4A0

PO / AFE: Job #:

ALS Account # / Quote #:

Pond B Oct 10, 2023

(ALS use only)

Pond B

ALS Sample #

Contact: Company:

Stephanie Dennis Clean Harbors Canada nvoice To Postal Code:

Same as Report To

Copy of Invoice with Report

Contact:

Company: Report To

Clean Harbors Canada

Todd Webb, Stan Yuha

Phone:

(780) 663-2513

Canada Toll Free: 1 800 668 9878

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION ALS Lab Work Order # (ALS use only): 602309217 Drinking Water (DW) Samples (client use) PO Box 390, 50114 Range Road 173 Company address below will appear on the final report Table 4.3B - Oct 10 Trout, Daphnia, COD, Sheen SHIPMENT RELEASE (client use) Contact and company name below will appear on the final report Project Information Sample Identification and/or Coordinates (This description will appear on the report) E022-CHES100-008 ΥES YES Analyze as per Table 4.3B package (COD, visible Sheen, Trout LC50, Daphnia LC50 only) S NO 10-Oct-23 Notes / Specify Limits for result evaluation by selecting from drop-down below Time: Select invoice Distribution: 🗸 EMAIL 🗌 MAIL Select Report Format: PDF EXCEL EDD (DIGITAL) Requisitioner: Email 2 Email 1 or Fax Dennis.Stephanie@cleanharbors.com Email 3 Email 2 Email 1 or Fax webb.todd@cleanharbors.com Select Distribution: Compare Results to Criteria on Report - provide details below if box checked Merge QC/QCI Reports with COA ☐ YES ☐ NO ☐ N/A ALS Contact: Major/Minor Code: AFE/Cost Center: Received by: _ocation: Oil and Gas Required Fields (client use) (Excel COC only) INITIAL SHIPMENT RECEPTION (ALS use only) yuha.stan@cleanharbors.com Megha Walia (dd-mmm-yy) 10-Oct-23 ✓ EMAIL Date Reports / Recipients **Invoice Recipients** WHITE - LABORATORY COPY Sampler: MAIL Routing Code: (hh:mm) Time FAX FAX Surface Water Todd Webb Sample Type YELLOW - CLIENT COPY Routine [R] if received by 3pm M-F - no surcharges apply
 4 day [P4] if received by 3pm M-F - 20% rush surcharge π
 3 day [P3] if received by 3pm M-F - 25% rush surcharge ι
 2 day [P2] if received by 3pm M-F - 50% rush surcharge ι
 1 day [E] if received by 3pm M-F - 100% rush surcharge ι
 Same day [E2] if received by 10am M-S - 200% rush surcharge ι Submission Comments identified on Sample Receipt Notification: Cooling Method: NUMBER OF CONTAINERS Cooler Custody Seals Intact: 12.6 Date and Time Required for all E&P TATs: P2 E559-L - COD INIITIAL COOLER TEMPERATURES °C Additional fees may apply to rush requests on wee Received by P2 E566 - visible sheen Turnaround Time (TAT) Requested Indicate Filtered (F), Preserved (P) or Filtere P3 3D-DAP-LC50-48 (Daphnia LC50) For all tests with rush TATs requested, ple NONE P3 3D-TRT-LC50-96h (trout LC50) SAMPLE RECEIPT DETAILS (ALS use only) □ ICE FINAL SHIPMENT RECEPTION (ALS use only) YES N/A Sample Custody Seals Intact: LICE PACKS | FROZEN Analysis **Environmental Division** Edmonton Telephane: +1 780 413 5227 Work Order Reference EO2309217 FINAL COOLER TEMPERATURES °C ☐ YES COOLING INITIATED □ NO ☐ YES Time: SAMPLES ON HOLD EXTENDED STORAGE REQU N/A SUSPECTED HAZARD (see no....)

Fallure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

Are samples taken from a Regulated DW System?

YES

S

Are samples for human consumption/ use?

YES

NO

Released by:

Todd Webb

Appendix C Ponds B, C and D Annual Monitoring – TABLE 4.3-E Analytical Report

September 2023

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS

Work Order : **EO2308479** Page : 1 of 12

Amendment : 1

Project

C-O-C number

PO

Client : Clean Harbors Environmental Laboratory : ALS Environmental - Edmonton

Services, Inc.

Contact : Todd Webb Account Manager : Megha Walia

Address : PO Box 390, 50114 Range Road 173 Address : 9450 - 17 Avenue NW

Edmonton AB Canada T6N 1M9

: +1 780 413 5227

: 19-Oct-2023 13:11

Ryley AB Canada T0B4A0
Telephone : 780 663 2513 Telephone

: 2023 Table 4.3E Annual Pond Date Samples Received : 19-Sep-2023 15:43

chemistry : 236266

: 236266 Date Analysis : 20-Sep-2023 Commenced

Issue Date

Sampler : TW
Site : Table 4.3E

Quote number : EO22-CHES100-008

No. of samples received : 3

No. of samples received : 3
No. of samples analysed : 3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Alex Drake	Lab Analyst	Inorganics, Edmonton, Alberta
Alex Drake	Lab Analyst	Metals, Edmonton, Alberta
Amanda Powell	Client Service Manager	Internal Subcontracting, Kelso, Washington DC (District of
		Columbia)
Amaninder Dhillon	Team Lead - Semi-Volatile Instrumentation	Organics, Waterloo, Ontario
Brooke Miller	Laboratory Analyst	Inorganics, Edmonton, Alberta
Dan Nguyen	Team Leader - Inorganics	Metals, Edmonton, Alberta
Daniel Nguyen	Lab Assistant	Metals, Edmonton, Alberta
Fahad Husain	Analyst	Inorganics, Edmonton, Alberta
Garrett Nodin	Lab Analyst	Inorganics, Edmonton, Alberta
Greg Pokocky	Manager - Inorganics	Inorganics, Waterloo, Ontario
Jing Liu	Lab Assistant	Inorganics, Edmonton, Alberta
Jocelyn Kennedy	Department Manager - Semi-Volatile Organics	Organics, Waterloo, Ontario
Kari Mulroy	Lab Supervisor - Environmental	Organics, Edmonton, Alberta
Lee McTavish		Inorganics, Winnipeg, Manitoba
Nik Perkio	Inorganics Analyst	Inorganics, Waterloo, Ontario
Ping Yeung	Team Leader - Inorganics	Inorganics, Edmonton, Alberta
Saron Gebremariam	Lab Assistant	Inorganics, Edmonton, Alberta
Yan Zhang	Lab Analyst	Organics, Edmonton, Alberta

Page : 2 of 12

Work Order : EO2308479 Amendment 1

Client : Clean Harbors Environmental Services, Inc.
Project : 2023 Table 4.3E Annual Pond chemistry

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Measurement Uncertainty: The reported uncertainties in this report are expanded uncertainties calculated using a coverage factor of 2, which gives a level of confidence of approximately 95%.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Unit	Description
-	no units
%	percent
μg/L	micrograms per litre
μS/cm	microsiemens per centimetre
mg/L	milligrams per litre
pH units	pH units

>: greater than.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

<: less than.

Page : 3 of 12

Work Order : EO2308479 Amendment 1

Client : Clean Harbors Environmental Services, Inc.
Project : 2023 Table 4.3E Annual Pond chemistry

Analytical Results

EO2308479-001

Sub-Matrix: Water Client sample ID: Pond B

(Matrix: Water) Client sampling date / time: 19-Sep-2023 11:30

Analyte	CAS Number	Result	LOR	Unit	Method/Lab	Prep Date	Analysis Date	QCLot
Physical Tests								
Alkalinity, bicarbonate (as HCO3)	71-52-3	173	1.0	mg/L	E290/EO	20-Sep-2023	21-Sep-2023	1143528
Alkalinity, carbonate (as CO3)	3812-32-6	12.7	1.0	mg/L	E290/EO	20-Sep-2023	21-Sep-2023	1143528
Alkalinity, hydroxide (as OH)	14280-30-9	<1.0	1.0	mg/L	E290/EO	20-Sep-2023	21-Sep-2023	1143528
Alkalinity, total (as CaCO3)		163	1.0	mg/L	E290/EO	20-Sep-2023	21-Sep-2023	1143528
Conductivity		874	1.0	μS/cm	E100/EO	20-Sep-2023	21-Sep-2023	1143527
Hardness (as CaCO3), dissolved		136	0.50	mg/L	EC100/EO	-	21-Sep-2023	-
pH		8.73	0.10	pH units	E108/EO	20-Sep-2023	21-Sep-2023	1143526
Solids, total dissolved [TDS], calculated		572	1.0	mg/L	EC103/EO	-	21-Sep-2023	-
Solids, total suspended [TSS]		23.6	3.0	mg/L	E160/EO	-	21-Sep-2023	1143359
Anions and Nutrients								
Ammonia, total (as N)	7664-41-7	0.401	0.0050	mg/L	E298/EO	20-Sep-2023	20-Sep-2023	1143947
Chloride	16887-00-6	26.1	0.50	mg/L	E235.CI/EO	20-Sep-2023	20-Sep-2023	1143727
Fluoride	16984-48-8	1.53	0.020	mg/L	E235.F/EO	20-Sep-2023	20-Sep-2023	1143724
Nitrate (as N)	14797-55-8	0.145	0.020	mg/L	E235.NO3/EO	20-Sep-2023	20-Sep-2023	1143725
Nitrate + Nitrite (as N)		0.145	0.0224	mg/L	EC235.N+N/EO	_	21-Sep-2023	-
Nitrite (as N)	14797-65-0	<0.010	0.010	mg/L	E235.NO2/EO	20-Sep-2023	20-Sep-2023	1143726
Phosphorus, total	7723-14-0	0.392	0.020	mg/L	E372/WP	25-Sep-2023	26-Sep-2023	1152274
Phosphorus, total dissolved	7723-14-0	0.321	0.020	mg/L	E375-H/WP	25-Sep-2023	26-Sep-2023	1152267
Sulfate (as SO4)	14808-79-8	241	0.30	mg/L	E235.SO4/EO	20-Sep-2023	20-Sep-2023	1143728
Kjeldahl nitrogen, total [TKN]		1.24	0.200	mg/L	E318/EO	21-Sep-2023	21-Sep-2023	1143331
Cyanides			0.200	9, =	20.0,20	2 : 35p 2525	21-0ep-2025	1143331
Cyanide, weak acid dissociable		<0.0050	0.0050	mg/L	E336/WT	22-Sep-2023	22-Sep-2023	1146403
Organic / Inorganic Carbon		0.0000	0.0000	9, =	2000,111		22-0ep-2020	1140403
Carbon, dissolved organic [DOC]		12.0	0.50	mg/L	E358-L/EO	20-Sep-2023	20-Sep-2023	1144576
Ion Balance		.2.0	0.00	9, =	2000 2/20	20 000 2020	20-0ep-2025	1144370
Ion balance (cations/anions)		98.1	0.010	%	EC101/EO	_	21-Sep-2023	
Total Metals							21-00p-2020	
Chromium, total	7440-47-3	0.00160	0.00050	mg/L	E420/EO	20-Sep-2023	20-Sep-2023	1143469
Mercury, total	7439-97-6	<0.0000050	0.0000050	mg/L	E508/EO	20-Sep-2023	20-Sep-2023	1143228
Sodium, total	7440-23-5	136	0.050	mg/L	E420/EO	20-Sep-2023	20-Sep-2023	1143469
Dissolved Metals	7440-20-0			9, =			20-00p-2020	1140400
Aluminum, dissolved	7429-90-5	0.0346	0.0010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Antimony, dissolved	7440-36-0	0.00083	0.00010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Arsenic, dissolved	7440-38-2	0.00461	0.00010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023 20-Sep-2023	1143515
Barium, dissolved	7440-30-2	0.0487	0.00010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023 20-Sep-2023	1143515
Beryllium, dissolved	7440-39-3	<0.000020	0.000020	mg/L	E421/EO	20-Sep-2023	20-Sep-2023 20-Sep-2023	1143515
Bismuth, dissolved	7440-69-9	<0.000050	0.000050	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Boron, dissolved	7440-09-9	0.174	0.010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023 20-Sep-2023	1143515
Cadmium, dissolved	7440-42-0	0.000219	0.000050	mg/L	E421/EO	20-Sep-2023	20-Sep-2023 20-Sep-2023	1143515
Calcium, dissolved	7440-43-9	35.7	0.050	mg/L	E421/EO	20-Sep-2023	20-Sep-2023 20-Sep-2023	1143515
Cesium, dissolved		<0.000010	0.00010	mg/L	E421/EO	20-Sep-2023 20-Sep-2023		
	7440-46-2	<0.000010	0.00050	mg/L	E421/EO	20-Sep-2023 20-Sep-2023	20-Sep-2023	1143515
Chromium, dissolved	7440-47-3						20-Sep-2023	1143515
Copper dissolved	7440-48-4	0.00083	0.00010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Copper, dissolved	7440-50-8	0.00551 0.026	0.00020 0.010	mg/L mg/L	E421/EO E421/EO	20-Sep-2023 20-Sep-2023	20-Sep-2023 20-Sep-2023	1143515 1143515
Iron, dissolved	7439-89-6	0.026						

Page : 4 of 12

Work Order : EO2308479 Amendment 1

Client : Clean Harbors Environmental Services, Inc.
Project : 2023 Table 4.3E Annual Pond chemistry

Analytical Results

EO2308479-001

Sub-Matrix: Water Client sample ID: Pond B

(Matrix: Water) Client sampling date / time: 19-Sep-2023 11:30

Analyte	CAS Number	Result	LOR	Unit	Method/Lab	Prep Date	Analysis	QCLot
	2.13 (1411130)					,	Date	
Dissolved Metals								
ead, dissolved	7439-92-1	0.000085	0.000050	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	114351
ithium, dissolved	7439-93-2	0.0433	0.0010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	114351
Magnesium, dissolved	7439-95-4	11.3	0.0050	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	114351
Manganese, dissolved	7439-96-5	0.00804	0.00010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	114351
Molybdenum, dissolved	7439-98-7	0.722	0.000050	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	114351
lickel, dissolved	7440-02-0	0.0174	0.00050	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	114351
Phosphorus, dissolved	7723-14-0	0.350	0.050	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	114351
Potassium, dissolved	7440-09-7	5.39	0.050	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	114351
Rubidium, dissolved	7440-17-7	0.00230	0.00020	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	114351
Selenium, dissolved	7782-49-2	0.00186	0.000050	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	114351
Silicon, dissolved	7440-21-3	0.352	0.050	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	114351
Silver, dissolved	7440-22-4	<0.000010	0.000010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	114351
Sodium, dissolved	7440-23-5	139	0.050	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	114351
Strontium, dissolved	7440-24-6	0.359	0.00020	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	114351
Sulfur, dissolved	7704-34-9	80.3	0.50	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Гellurium, dissolved	13494-80-9	<0.00020	0.00020	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	114351
Γhallium, dissolved	7440-28-0	<0.000010	0.000010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Γhorium, dissolved	7440-29-1	<0.00010	0.00010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	114351
Γin, dissolved	7440-31-5	<0.00010	0.00010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	114351
Fitanium, dissolved	7440-32-6	0.00195	0.00030	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	114351
ungsten, dissolved	7440-33-7	0.00259	0.00010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	114351
Jranium, dissolved	7440-61-1	0.00333	0.000010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	114351
/anadium, dissolved	7440-62-2	0.0174	0.00050	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	114351
Zinc, dissolved	7440-66-6	0.0034	0.0010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	114351
Zirconium, dissolved	7440-67-7	0.00027	0.00020	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	114351
Dissolved metals filtration location		Field	-	-	EP421/EO	-	20-Sep-2023	114351
Speciated Metals								
hromium, hexavalent [Cr VI], dissolved	18540-29-9	<0.00050	0.00050	mg/L	E532A/EO	-	20-Sep-2023	114403
Aggregate Organics								
Adsorbable organic halogens, [AOX], (as CI)		0.020	10	mg/L	AOX/1D	-	06-Oct-2023	-
Chemical oxygen demand [COD]		37	10	mg/L	E559-L/EO	-	20-Sep-2023	114373
Phenols, total (4AAP)		0.0019	0.0010	mg/L	E562/EO	21-Sep-2023	21-Sep-2023	114613
Volatile Organic Compounds								
Benzene	71-43-2	<0.50	0.50	μg/L	E611A/EO	21-Sep-2023	21-Sep-2023	114334
Ethylbenzene	100-41-4	<0.50	0.50	μg/L	E611A/EO	21-Sep-2023	21-Sep-2023	1143344
Foluene Foluene	108-88-3	<0.50	0.50	μg/L	E611A/EO	21-Sep-2023	21-Sep-2023	1143344
(ylene, m+p-	179601-23-1	<0.40	0.40	μg/L	E611A/EO	21-Sep-2023	21-Sep-2023	114334
(ylene, o-	95-47-6	<0.30	0.30	μg/L	E611A/EO	21-Sep-2023	21-Sep-2023	1143344
(ylenes, total	1330-20-7	<0.50	0.50	μg/L	E611A/EO	21-Sep-2023	21-Sep-2023	1143344
Hydrocarbons								
F1 (C6-C10)		<100	100	μg/L	E581.F1/EO	21-Sep-2023	21-Sep-2023	114334
-1-BTEX		<100	100	μg/L	EC580/EO	-	25-Sep-2023	-
F2 (C10-C16)		<100	100	μg/L	E601/EO	20-Sep-2023	20-Sep-2023	1143263
Hydrocarbons Surrogates								
Bromobenzotrifluoride, 2- (F2-F4 surrogate)	392-83-6	105	1.0	%	E601/EO	20-Sep-2023	20-Sep-2023	1143263

Page : 5 of 12

Work Order : EO2308479 Amendment 1

Client : Clean Harbors Environmental Services, Inc.
Project : 2023 Table 4.3E Annual Pond chemistry

Analytical Results

EO2308479-001

Sub-Matrix: Water Client sample ID: Pond B

(Matrix: Water) Client sampling date / time: 19-Sep-2023 11:30

(Matrix: water)		Chefit San	ripiirig date / t		ep-2023 11:30			
Analyte	CAS Number	Result	LOR	Unit	Method/Lab	Prep Date	Analysis Date	QCLot
Hydrocarbons Surrogates								
Dichlorotoluene, 3,4-	95-75-0	104	1.0	%	E581.F1/EO	21-Sep-2023	21-Sep-2023	1143345
Volatile Organic Compounds Surrogates								
Bromofluorobenzene, 4-	460-00-4	89.1	1.0	%	E611A/EO	21-Sep-2023	21-Sep-2023	1143344
Difluorobenzene, 1,4-	540-36-3	93.9	1.0	%	E611A/EO	21-Sep-2023	21-Sep-2023	1143344
Chlorinated Phenolics								
Chlorophenol, 2-	95-57-8	<0.30	0.30	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Dichlorophenol, 2,4-	120-83-2	<0.20	0.20	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Dichlorophenol, 2,6-	87-65-0	<0.20	0.20	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Methylphenol, 4-chloro-3-	59-50-7	<0.50	0.50	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Pentachlorophenol [PCP]	87-86-5	<0.50	0.50	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Tetrachlorophenol, 2,3,4,5-	4901-51-3	<0.50	0.50	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Tetrachlorophenol, 2,3,4,6-	58-90-2	<0.50	0.50	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Tetrachlorophenol, 2,3,5,6-	935-95-5	<0.50	0.50	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Trichlorophenol, 2,3,4-	15950-66-0	<0.50	0.50	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Trichlorophenol, 2,3,5-	933-78-8	<0.50	0.50	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Trichlorophenol, 2,4,5-	95-95-4	<0.50	0.50	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Trichlorophenol, 2,4,6-	88-06-2	<0.50	0.50	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Non-Chlorinated Phenolics								
Dimethylphenol, 2,4-	105-67-9	<0.50	0.50	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Dinitrophenol, 2,4-	51-28-5	<1.0	1.0	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Methylphenol, 2-	95-48-7	<0.50	0.50	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Methylphenol, 3+4-		<0.50	0.50	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Methylphenols, total		<0.75	0.75	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Nitrophenol, 2-	88-75-5	<0.50	0.50	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Nitrophenol, 4-	100-02-7	<0.50	0.50	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Phenol	108-95-2	<0.50	0.50	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Phenol, 2-methyl-4,6-dinitro- [DNOC]	534-52-1	<2.0	2.0	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Phenolics Surrogates	33 . 32 .			1.0			20 000 2020	
Tribromophenol, 2,4,6-	118-79-6	115	1.0	%	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Polychlorinated Biphenyls							20 000 2020	1102010
Aroclor 1016	12674-11-2	<0.020	0.020	μg/L	E687/WT	25-Sep-2023	26-Sep-2023	1151415
Aroclor 1221	11104-28-2	<0.020	0.020	μg/L	E687/WT	25-Sep-2023	26-Sep-2023	1151415
Aroclor 1232	11141-16-5	<0.020	0.020	µg/L	E687/WT	25-Sep-2023	26-Sep-2023	1151415
Aroclor 1242	53469-21-9	<0.020	0.020	μg/L	E687/WT	25-Sep-2023	26-Sep-2023	1151415
Aroclor 1248	12672-29-6	<0.020	0.020	μg/L	E687/WT	25-Sep-2023	26-Sep-2023	1151415
Aroclor 1254	11097-69-1	<0.020	0.020	μg/L	E687/WT	25-Sep-2023	26-Sep-2023	1151415
Aroclor 1260		<0.020	0.020	μg/L	E687/WT	25-Sep-2023	26-Sep-2023 26-Sep-2023	
Aroclor 1260 Aroclor 1262	11096-82-5	<0.020	0.020	μg/L	E687/WT	25-Sep-2023		1151415
Aroclor 1262 Aroclor 1268	37324-23-5	<0.020	0.020		E687/WT	25-Sep-2023 25-Sep-2023	26-Sep-2023	1151415
	11100-14-4	<0.020	0.020	μg/L ug/l	E687/WT	25-Sep-2023 25-Sep-2023	26-Sep-2023	1151415
Polychlorinated biphenyls [PCBs], total		\U.U0U	0.000	μg/L	L007/W1	20-3ep-2023	26-Sep-2023	1151415
Polychlorinated Biphenyls Surrogates	0051.01.5	106	0.1	0/	E607/M/T	25 800 2002	00.0	4454445
Decachlorobiphenyl	2051-24-3	106	0.1	%	E687/WT	25-Sep-2023	26-Sep-2023	1151415
Tetrachloro-m-xylene	877-09-8	96.6	0.1	%	E687/WT	25-Sep-2023	26-Sep-2023	1151415

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Page : 6 of 12

Work Order : EO2308479 Amendment 1

Client : Clean Harbors Environmental Services, Inc.
Project : 2023 Table 4.3E Annual Pond chemistry

Analytical Results

EO2308479-002

Sub-Matrix: Water Client sample ID: Pond C

(Matrix: Water) Client sampling date / time: 19-Sep-2023 11:30

iviatrix. water)			arripiirig date / t					
Analyte	CAS Number	Result	LOR	Unit	Method/Lab	Prep Date	Analysis	QCLo
							Date	
Physical Tests		444	4.0		E000/E0	00.00000	1	
Alkalinity, bicarbonate (as HCO3)	71-52-3	141	1.0	mg/L	E290/E0	20-Sep-2023	21-Sep-2023	114352
Alkalinity, carbonate (as CO3)	3812-32-6	13.8	1.0	mg/L	E290/EO	20-Sep-2023	21-Sep-2023	114352
Alkalinity, hydroxide (as OH)	14280-30-9	<1.0	1.0	mg/L	E290/EO	20-Sep-2023	21-Sep-2023	114352
Alkalinity, total (as CaCO3)		139	1.0	mg/L	E290/EO	20-Sep-2023	21-Sep-2023	11435
Conductivity		914	1.0	μS/cm	E100/EO	20-Sep-2023	21-Sep-2023	11435
lardness (as CaCO3), dissolved		140	0.50	mg/L	EC100/EO	-	21-Sep-2023	-
Н		8.94	0.10	pH units	E108/EO	20-Sep-2023	21-Sep-2023	11435
Solids, total dissolved [TDS], calculated		603	1.0	mg/L	EC103/EO	-	21-Sep-2023	-
Solids, total suspended [TSS]		14.6	3.0	mg/L	E160/EO	-	21-Sep-2023	11433
Anions and Nutrients								
Ammonia, total (as N)	7664-41-7	0.0218	0.0050	mg/L	E298/EO	20-Sep-2023	20-Sep-2023	11439
Chloride	16887-00-6	49.9	0.50	mg/L	E235.CI/EO	20-Sep-2023	20-Sep-2023	11437
luoride	16984-48-8	0.700	0.020	mg/L	E235.F/EO	20-Sep-2023	20-Sep-2023	11437
litrate (as N)	14797-55-8	<0.020	0.020	mg/L	E235.NO3/EO	20-Sep-2023	20-Sep-2023	11437
litrate + Nitrite (as N)		<0.0224	0.0224	mg/L	EC235.N+N/EO	-	21-Sep-2023	-
litrite (as N)	14797-65-0	<0.010	0.010	mg/L	E235.NO2/EO	20-Sep-2023	20-Sep-2023	11437
Phosphorus, total	7723-14-0	0.040	0.020	mg/L	E372/WP	25-Sep-2023	26-Sep-2023	11522
Phosphorus, total dissolved	7723-14-0	< 0.020	0.020	mg/L	E375-H/WP	25-Sep-2023	26-Sep-2023	11522
ulfate (as SO4)	14808-79-8	258	0.30	mg/L	E235.SO4/EO	20-Sep-2023	20-Sep-2023	11437
jeldahl nitrogen, total [TKN]		1.12	0.200	mg/L	E318/EO	21-Sep-2023	21-Sep-2023	11433
Cyanides								
yanide, weak acid dissociable		<0.0050	0.0050	mg/L	E336/WT	22-Sep-2023	22-Sep-2023	114640
Organic / Inorganic Carbon							1	
Carbon, dissolved organic [DOC]		9.95	0.50	mg/L	E358-L/EO	20-Sep-2023	20-Sep-2023	11445
on Balance							1	
on balance (cations/anions)		96.1	0.010	%	EC101/EO	-	21-Sep-2023	_
Fotal Metals							1 - 1 - 1 - 1 - 1	
Chromium, total	7440-47-3	<0.00050	0.00050	mg/L	E420/EO	20-Sep-2023	20-Sep-2023	114346
/ lercury, total	7439-97-6	<0.0000050	0.0000050	mg/L	E508/EO	20-Sep-2023	20-Sep-2023	114322
Sodium, total	7440-23-5	157	0.050	mg/L	E420/EO	20-Sep-2023	20-Sep-2023	11434
Dissolved Metals	7440-20-0			9, =		20 330 2020	20-00p-2020	11404
Aluminum, dissolved	7429-90-5	0.0134	0.0010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	11435
Antimony, dissolved	7440-36-0	0.00055	0.00010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	11435
rsenic, dissolved	7440-38-2	0.00348	0.00010	mg/L	E421/EO	20-Sep-2023	· ·	11435
Barium, dissolved	7440-39-3	0.0147	0.00010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023 20-Sep-2023	11435
Beryllium, dissolved		<0.00020	0.00010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023 20-Sep-2023	
Bismuth, dissolved	7440-41-7	<0.000020	0.000020	mg/L	E421/EO	20-Sep-2023		11435
•	7440-69-9		0.00030			20-Sep-2023 20-Sep-2023	20-Sep-2023	11435
oron, dissolved	7440-42-8	0.057 0.0000238	0.000050	mg/L	E421/EO	· ·	20-Sep-2023	11435
admium, dissolved	7440-43-9			mg/L	E421/EO	20-Sep-2023	20-Sep-2023	11435
alcium, dissolved	7440-70-2	35.9	0.050	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	11435
esium, dissolved	7440-46-2	<0.000010	0.000010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	11435
Chromium, dissolved	7440-47-3	<0.00050	0.00050	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	11435
Cobalt, dissolved	7440-48-4	0.00018	0.00010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	11435
Copper, dissolved	7440-50-8	0.00275	0.00020	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	11435
ron, dissolved	7439-89-6	0.014	0.010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	114351

Page : 7 of 12

Work Order : EO2308479 Amendment 1

Client : Clean Harbors Environmental Services, Inc.
Project : 2023 Table 4.3E Annual Pond chemistry

Analytical Results

EO2308479-002

Sub-Matrix: Water Client sample ID: Pond C

(Matrix: Water) Client sampling date / time: 19-Sep-2023 11:30

Analyta	CAS Number	Result	LOR	Unit	Method/Lab	Prep Date	Analysis	QCLot
Analyte	CAS Number	resur	Lon	Ome	Wictifod/Lab	T Top Bate	Analysis Date	QOLO
Dissolved Metals							24.0	
Lead, dissolved	7439-92-1	<0.000050	0.000050	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Lithium, dissolved	7439-93-2	0.0240	0.0010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Magnesium, dissolved	7439-95-4	12.2	0.0050	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Manganese, dissolved	7439-96-5	0.00953	0.00010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Molybdenum, dissolved	7439-98-7	0.0835	0.000050	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Nickel, dissolved	7440-02-0	0.00705	0.00050	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Phosphorus, dissolved	7723-14-0	<0.050	0.050	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Potassium, dissolved	7440-09-7	4.58	0.050	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Rubidium, dissolved	7440-17-7	0.00147	0.00020	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Selenium, dissolved	7782-49-2	0.000536	0.000050	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Silicon, dissolved	7440-21-3	1.40	0.050	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Silver, dissolved	7440-22-4	<0.000010	0.000010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Sodium, dissolved	7440-23-5	145	0.050	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Strontium, dissolved	7440-24-6	0.312	0.00020	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Sulfur, dissolved	7704-34-9	84.9	0.50	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Tellurium, dissolved	13494-80-9	<0.00020	0.00020	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Thallium, dissolved	7440-28-0	<0.000010	0.000010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Thorium, dissolved	7440-29-1	0.00011	0.00010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Tin, dissolved	7440-31-5	<0.00010	0.00010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Titanium, dissolved	7440-32-6	0.00054	0.00030	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Tungsten, dissolved	7440-33-7	0.00064	0.00010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Uranium, dissolved	7440-61-1	0.00163	0.000010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Vanadium, dissolved	7440-62-2	0.00270	0.00050	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Zinc, dissolved	7440-66-6	0.0016	0.0010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Zirconium, dissolved	7440-67-7	<0.00020	0.00020	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Dissolved metals filtration location		Field	-	-	EP421/EO	-	20-Sep-2023	1143515
Speciated Metals								
Chromium, hexavalent [Cr VI], dissolved	18540-29-9	<0.00050	0.00050	mg/L	E532A/EO	-	20-Sep-2023	1144038
Aggregate Organics								
Adsorbable organic halogens, [AOX], (as CI)		0.020	10	mg/L	AOX/1D	-	06-Oct-2023	-
Chemical oxygen demand [COD]		58	10	mg/L	E559-L/EO	-	20-Sep-2023	1143738
Phenols, total (4AAP)		0.0012	0.0010	mg/L	E562/EO	21-Sep-2023	21-Sep-2023	1146134
Volatile Organic Compounds								
Benzene	71-43-2	<0.50	0.50	μg/L	E611A/EO	21-Sep-2023	21-Sep-2023	1143344
Ethylbenzene	100-41-4	<0.50	0.50	μg/L	E611A/EO	21-Sep-2023	21-Sep-2023	1143344
Toluene	108-88-3	<0.50	0.50	μg/L	E611A/EO	21-Sep-2023	21-Sep-2023	1143344
Xylene, m+p-	179601-23-1	<0.40	0.40	μg/L	E611A/EO	21-Sep-2023	21-Sep-2023	1143344
Xylene, o-	95-47-6	<0.30	0.30	μg/L	E611A/EO	21-Sep-2023	21-Sep-2023	1143344
Xylenes, total	1330-20-7	<0.50	0.50	μg/L	E611A/EO	21-Sep-2023	21-Sep-2023	1143344
Hydrocarbons								
F1 (C6-C10)		<100	100	μg/L	E581.F1/EO	21-Sep-2023	21-Sep-2023	1143345
F1-BTEX		<100	100	μg/L	EC580/EO	-	25-Sep-2023	-
F2 (C10-C16)		<100	100	μg/L	E601/EO	20-Sep-2023	20-Sep-2023	1143263
Hydrocarbons Surrogates								
Bromobenzotrifluoride, 2- (F2-F4 surrogate)	392-83-6	103	1.0	%	E601/EO	20-Sep-2023	20-Sep-2023	1143263

Page : 8 of 12

Work Order : EO2308479 Amendment 1

Client : Clean Harbors Environmental Services, Inc.
Project : 2023 Table 4.3E Annual Pond chemistry

Analytical Results

EO2308479-002

Sub-Matrix: Water Client sample ID: Pond C

(Matrix: Water) Client sampling date / time: 19-Sep-2023 11:30

Protectations Surrogales				, ,					
Section Sect	Analyte	CAS Number	Result	LOR	Unit	Method/Lab	Prep Date	1	QCLot
Validatic Organic Compounds Surrogates Validatic Organic Compounds Surrogates Validatic Organic Compounds Surrogates Validation	Hydrocarbons Surrogates								
	Dichlorotoluene, 3,4-	95-75-0	114	1.0	%	E581.F1/EO	21-Sep-2023	21-Sep-2023	1143345
	Volatile Organic Compounds Surrogates								
Chlorinated Phenolics Section	Bromofluorobenzene, 4-	460-00-4	92.4	1.0	%	E611A/EO	21-Sep-2023	21-Sep-2023	1143344
Richrophenol, 2- 95-57-8 < 0.30 0.30 µg/L E651CWT 25-Sep-2023 26-Sep-2023 1152973 1152	Difluorobenzene, 1,4-	540-36-3	93.6	1.0	%	E611A/EO	21-Sep-2023	21-Sep-2023	1143344
	Chlorinated Phenolics								
	Chlorophenol, 2-	95-57-8	<0.30	0.30	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
	Dichlorophenol, 2,4-	120-83-2	<0.20	0.20	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Part	Dichlorophenol, 2,6-	87-65-0	<0.20	0.20	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
etrachlorophenol, 2,3,4,5- etrachlorophenol, 2,3,4,6- etrachlorophenol, 2,3,4,6- etrachlorophenol, 2,3,4,6- etrachlorophenol, 2,3,5,6- sp. 935-95-5 richlorophenol, 2,3,5,6- richlorophenol, 2,3,5- richlorophenol, 2,3,5- richlorophenol, 2,3,5- sp. 933-78-8 sp. 90.50 sp. 935-95-5 sp. 935-95-5 sp. 933-78-8 sp. 90.50 sp. 99/L sp. 1. E651C/WT sp. 25-Sep-2023 sp. 26-Sep-2023 sp. 26-Sep-	Methylphenol, 4-chloro-3-	59-50-7	<0.50	0.50	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
etrachlorophenol, 2,3,4,6- etrachlorophenol, 2,3,5,6- etrachlorophenol, 2,3,5,6- g35,95-5 g45,0-50 g55,0-50 g67,1- g47,1- g47,1- g48,0-50	Pentachlorophenol [PCP]	87-86-5	<0.50	0.50	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
etrachlorophenol, 2,3,4,6- stachlorophenol, 2,3,5,6- stachlorophenol, 2,3,5,6- stachlorophenol, 2,3,5,6- stachlorophenol, 2,3,5,6- stachlorophenol, 2,3,4- stachlorophenol, 2,3,4- stachlorophenol, 2,3,4- stachlorophenol, 2,3,4- stachlorophenol, 2,3,5- stachlorophenol, 2,3,5- stachlorophenol, 2,3,5- stachlorophenol, 2,3,5- stachlorophenol, 2,3,5- stachlorophenol, 2,4,5- stachlorophenol, 2,4,6- stachlorophenol, 2,4,6- stachlorophenol, 2,4,6- stachlorophenol, 2,4,6- stachlorophenol, 2,4,6- stachlorophenol, 2,4,6- stachlorophenol, 2,4- stachlorophen	Tetrachlorophenol, 2,3,4,5-	4901-51-3	<0.50	0.50	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
etrachlorophenol, 2,3,6-	Tetrachlorophenol, 2,3,4,6-	58-90-2	<0.50	0.50	μg/L	E651C/WT	25-Sep-2023		1152973
richlorophenol, 2,3,5- richlorophenol, 2,4,5- richlorophenol, 2,4,6- richlorophenol, 2,4- richlo	Tetrachlorophenol, 2,3,5,6-	935-95-5	<0.50	0.50	μg/L	E651C/WT	25-Sep-2023		1152973
richlorophenol, 2,4,5- richlorophenol, 2,4,6- 88-06-2	Trichlorophenol, 2,3,4-	15950-66-0	<0.50	0.50	μg/L	E651C/WT	25-Sep-2023		1152973
richlorophenol, 2,4,5- richlorophenol, 2,4,6- 88-06-2 95-95-4 95-95-2	Trichlorophenol, 2,3,5-	933-78-8	<0.50	0.50	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Non-Chlorinated Phenolics	Trichlorophenol, 2,4,5-	95-95-4	<0.50	0.50	μg/L	E651C/WT	25-Sep-2023		1152973
105-67-9 <0.50 0.50 µg/L E651C/WT 25-Sep-2023 26-Sep-2023 1152973 11	Trichlorophenol, 2,4,6-	88-06-2	<0.50	0.50	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
	Non-Chlorinated Phenolics								
Sethylphenol, 2- 95-48-7 <0.50 0.50 µg/L E651C/WT 25-Sep-2023 26-Sep-2023 1152973 26-Sep-2023 26-S	Dimethylphenol, 2,4-	105-67-9	<0.50	0.50	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Sethylphenol, 3+4-	Dinitrophenol, 2,4-	51-28-5	<1.0	1.0	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Selethylphenols, total Control	Methylphenol, 2-	95-48-7	<0.50	0.50	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Second Color Seco	Methylphenol, 3+4-		<0.50	0.50	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
100-02-7 <0.50 0.50 µg/L E651C/WT 25-Sep-2023 26-Sep-2023 1152973 26-Sep-2023 1252973 26-Sep-2023 1252	Methylphenols, total		<0.75	0.75	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
108-95-2 <0.50 0.50 µg/L E651C/WT 25-Sep-2023 26-Sep-2023 1152973 26-Sep-2023 26-Sep-2023 1252973 26-Sep-2	Nitrophenol, 2-	88-75-5	<0.50	0.50	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Phenolics Surrogates Pribromophenol, 2,4,6- P	Nitrophenol, 4-	100-02-7	<0.50	0.50	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Phenolics Surrogates Tribromophenol, 2,4,6- Polychlorinated Biphenyls Proclor 1016 12674-11-2 11104-28-2 11104-28-2 11141-16-5 11141-16-5 11541-5	Phenol	108-95-2	<0.50	0.50	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Tibromophenol, 2,4,6- 118-79-6 106 1.0 % E651C/WT 25-Sep-2023 26-Sep-2023 1152973 Polychlorinated Biphenyls Iroclor 1016 12674-11-2 <0.020 0.020 µg/L E687/WT 25-Sep-2023 26-Sep-2023 1151415 Iroclor 1221 11104-28-2 <0.020 0.020 µg/L E687/WT 25-Sep-2023 26-Sep-2023 1151415 Iroclor 1232 11141-16-5 <0.020 0.020 µg/L E687/WT 25-Sep-2023 26-Sep-2023 1151415 Iroclor 1242 53469-21-9 <0.020 0.020 µg/L E687/WT 25-Sep-2023 26-Sep-2023 1151415 Iroclor 1248 12672-29-6 <0.020 0.020 µg/L E687/WT 25-Sep-2023 26-Sep-2023 1151415 Iroclor 1248 11097-69-1 <0.020 0.020 µg/L E687/WT 25-Sep-2023 26-Sep-2023 1151415 Iroclor 1254	Phenol, 2-methyl-4,6-dinitro- [DNOC]	534-52-1	<2.0	2.0	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Polychlorinated Biphenyls Aroclor 1016 12674-11-2 <0.020 0.020 μg/L E687/WT 25-Sep-2023 26-Sep-2023 1151415 Aroclor 1221 11104-28-2 <0.020 0.020 μg/L E687/WT 25-Sep-2023 26-Sep-2023 1151415 Aroclor 1232 11141-16-5 <0.020 0.020 μg/L E687/WT 25-Sep-2023 26-Sep-2023 1151415 Aroclor 1242 53469-21-9 <0.020 0.020 μg/L E687/WT 25-Sep-2023 26-Sep-2023 1151415 Aroclor 1248 12672-29-6 <0.020 0.020 μg/L E687/WT 25-Sep-2023 26-Sep-2023 1151415 Aroclor 1254 11097-69-1 <0.020 0.020 μg/L E687/WT 25-Sep-2023 26-Sep-2023 1151415	Phenolics Surrogates								
roclor 1016 12674-11-2 <0.020 0.020 μg/L E687/WT 25-Sep-2023 26-Sep-2023 1151415 1514	Tribromophenol, 2,4,6-	118-79-6	106	1.0	%	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
11104-28-2	Polychlorinated Biphenyls								
4 roclor 1232 11141-16-5 <0.020 0.020 μg/L E687/WT 25-Sep-2023 26-Sep-2023 1151415 4 roclor 1242 53469-21-9 <0.020 0.020 μg/L E687/WT 25-Sep-2023 26-Sep-2023 1151415 4 roclor 1248 12672-29-6 <0.020 0.020 μg/L E687/WT 25-Sep-2023 26-Sep-2023 1151415 4 roclor 1254 11097-69-1 <0.020 0.020 μg/L E687/WT 25-Sep-2023 26-Sep-2023 1151415	Aroclor 1016	12674-11-2	<0.020	0.020	μg/L	E687/WT	25-Sep-2023	26-Sep-2023	1151415
Aroclor 1242 53469-21-9 <0.020	Aroclor 1221	11104-28-2	<0.020	0.020	μg/L	E687/WT	25-Sep-2023	26-Sep-2023	1151415
Aroclor 1248 12672-29-6 <0.020	Aroclor 1232	11141-16-5	<0.020	0.020	μg/L	E687/WT	25-Sep-2023	26-Sep-2023	1151415
aroclor 1254 11097-69-1 <0.020 0.020 μg/L E687/WT 25-Sep-2023 26-Sep-2023 1151415	Aroclor 1242	53469-21-9	<0.020	0.020	μg/L	E687/WT	25-Sep-2023	26-Sep-2023	1151415
	Aroclor 1248	12672-29-6	<0.020	0.020	μg/L	E687/WT	25-Sep-2023	26-Sep-2023	1151415
roclor 1260 11096-82-5 <0.020 0.020 μg/L E687/WT 25-Sep-2023 26-Sep-2023 1151415	Aroclor 1254	11097-69-1	<0.020	0.020	μg/L	E687/WT	25-Sep-2023	26-Sep-2023	1151415
	Aroclor 1260		<0.020	0.020	μg/L	E687/WT	25-Sep-2023	26-Sep-2023	1151415
roclor 1262 37324-23-5 <0.020 0.020 μg/L E687/WT 25-Sep-2023 26-Sep-2023 1151415	Aroclor 1262	37324-23-5	<0.020	0.020	μg/L	E687/WT	25-Sep-2023	· ·	1151415
	Aroclor 1268	11100-14-4	<0.020	0.020	μg/L	E687/WT	25-Sep-2023		1151415
	Polychlorinated biphenyls [PCBs], total		<0.060	0.060	μg/L	E687/WT	25-Sep-2023	·	1151415
·	Polychlorinated Biphenyls Surrogates							,	
Decachlorobiphenyl 2051-24-3 120 0.1 % E687/WT 25-Sep-2023 26-Sep-2023 1151415	Decachlorobiphenyl	2051-24-3	120	0.1	%	E687/WT	25-Sep-2023	26-Sep-2023	1151415
	Tetrachloro-m-xylene		96.2	0.1	%	E687/WT	25-Sep-2023		1151415

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Page : 9 of 12

Work Order : EO2308479 Amendment 1

Client : Clean Harbors Environmental Services, Inc.
Project : 2023 Table 4.3E Annual Pond chemistry

Analytical Results

EO2308479-003

Sub-Matrix: Water Client sample ID: Tipping Pad Pond

(Matrix: Water) Client sampling date / time: 19-Sep-2023 11:30

							1	
Analyte	CAS Number	Result	LOR	Unit	Method/Lab	Prep Date	Analysis	QCLot
Physical Tests							Date	
Alkalinity, bicarbonate (as HCO3)	71-52-3	64.3	1.0	mg/L	E290/EO	20-Sep-2023	21-Sep-2023	1143528
Alkalinity, carbonate (as CO3)	3812-32-6	36.7	1.0	mg/L	E290/EO	20-Sep-2023	21-Sep-2023	1143528
Alkalinity, hydroxide (as OH)	14280-30-9	<1.0	1.0	mg/L	E290/EO	20-Sep-2023	21-Sep-2023	1143528
Alkalinity, total (as CaCO3)		114	1.0	mg/L	E290/EO	20-Sep-2023	21-Sep-2023	1143528
Conductivity		1280	1.0	μS/cm	E100/EO	20-Sep-2023	21-Sep-2023	1143527
Hardness (as CaCO3), dissolved		77.6	0.50	mg/L	EC100/EO	-	21-Sep-2023	_
pH		9.85	0.10	pH units	E108/EO	20-Sep-2023	21-Sep-2023	1143526
Solids, total dissolved [TDS], calculated		873	1.0	mg/L	EC103/EO	-	21-Sep-2023	_
Solids, total suspended [TSS]		39.2	3.0	mg/L	E160/EO	-	21-Sep-2023	1143359
Anions and Nutrients								
Ammonia, total (as N)	7664-41-7	0.0217	0.0050	mg/L	E298/EO	20-Sep-2023	20-Sep-2023	1143947
Chloride	16887-00-6	6.02	0.50	mg/L	E235.CI/EO	20-Sep-2023	20-Sep-2023	1143727
Fluoride	16984-48-8	1.25	0.020	mg/L	E235.F/EO	20-Sep-2023	20-Sep-2023	1143724
Nitrate (as N)	14797-55-8	<0.020	0.020	mg/L	E235.NO3/EO	20-Sep-2023	20-Sep-2023	1143725
Nitrate + Nitrite (as N)		< 0.0224	0.0224	mg/L	EC235.N+N/EO	-	21-Sep-2023	-
Nitrite (as N)	14797-65-0	<0.010	0.010	mg/L	E235.NO2/EO	20-Sep-2023	20-Sep-2023	1143726
Phosphorus, total	7723-14-0	0.306	0.020	mg/L	E372/WP	25-Sep-2023	26-Sep-2023	1152274
Phosphorus, total dissolved	7723-14-0	0.090	0.020	mg/L	E375-H/WP	25-Sep-2023	26-Sep-2023	1152267
Sulfate (as SO4)	14808-79-8	504	0.30	mg/L	E235.SO4/EO	20-Sep-2023	20-Sep-2023	1143728
Kjeldahl nitrogen, total [TKN]		1.06	0.200	mg/L	E318/EO	21-Sep-2023	21-Sep-2023	1143331
Cyanides								
Cyanide, weak acid dissociable		<0.0050	0.0050	mg/L	E336/WT	22-Sep-2023	22-Sep-2023	1146403
Organic / Inorganic Carbon								
Carbon, dissolved organic [DOC]		8.24	0.50	mg/L	E358-L/EO	20-Sep-2023	20-Sep-2023	1144576
Ion Balance								
lon balance (cations/anions)		96.9	0.010	%	EC101/EO	-	21-Sep-2023	-
Total Metals								
Chromium, total	7440-47-3	0.00388	0.00050	mg/L	E420/EO	20-Sep-2023	20-Sep-2023	1143469
Mercury, total	7439-97-6	<0.000050	0.0000050	mg/L	E508/EO	20-Sep-2023	20-Sep-2023	1143228
Sodium, total	7440-23-5	266	0.050	mg/L	E420/EO	20-Sep-2023	20-Sep-2023	1143469
Dissolved Metals								
Aluminum, dissolved	7429-90-5	0.0701	0.0010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Antimony, dissolved	7440-36-0	0.00100	0.00010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Arsenic, dissolved	7440-38-2	0.00376	0.00010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Barium, dissolved	7440-39-3	0.0210	0.00010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Beryllium, dissolved	7440-41-7	<0.000020	0.000020	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Bismuth, dissolved	7440-69-9	<0.000050	0.000050	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Boron, dissolved	7440-42-8	0.063	0.010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Cadmium, dissolved	7440-43-9	0.0000399	0.0000050	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Calcium, dissolved	7440-70-2	21.2	0.050	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Cesium, dissolved	7440-46-2	<0.000010	0.000010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Chromium, dissolved	7440-47-3	0.00095	0.00050	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Cobalt, dissolved	7440-48-4	0.00034	0.00010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Copper, dissolved	7440-50-8	0.00259	0.00020	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Iron, dissolved	7439-89-6	0.040	0.010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515

Page : 10 of 12

Work Order : EO2308479 Amendment 1

Client : Clean Harbors Environmental Services, Inc.
Project : 2023 Table 4.3E Annual Pond chemistry

Analytical Results

EO2308479-003

Sub-Matrix: Water Client sample ID: Tipping Pad Pond

(Matrix: Water) Client sampling date / time: 19-Sep-2023 11:30

A L d-	0404	Popult	LOB	Unit	Method/Lab	Bron Data	A t t-	QCLot
Analyte	CAS Number	Result	LOR	Unit	Welliou/Lab	Prep Date	Analysis Date	QCLO
Dissolved Metals							Date	
_ead, dissolved	7439-92-1	0.000105	0.000050	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
_ithium, dissolved	7439-93-2	0.0545	0.0010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Magnesium, dissolved	7439-95-4	5.98	0.0050	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Manganese, dissolved	7439-96-5	0.00090	0.00010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Molybdenum, dissolved	7439-98-7	0.104	0.000050	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Nickel, dissolved	7440-02-0	0.00539	0.00050	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Phosphorus, dissolved	7723-14-0	0.088	0.050	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Potassium, dissolved	7440-09-7	4.26	0.050	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Rubidium, dissolved	7440-17-7	0.00233	0.00020	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Selenium, dissolved	7782-49-2	0.00986	0.000050	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Silicon, dissolved	7440-21-3	0.659	0.050	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Silver, dissolved	7440-22-4	0.000012	0.000010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Sodium, dissolved	7440-23-5	252	0.050	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Strontium, dissolved	7440-24-6	0.254	0.00020	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Sulfur, dissolved	7704-34-9	168	0.50	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Tellurium, dissolved	13494-80-9	<0.00020	0.00020	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Thallium, dissolved	7440-28-0	<0.000010	0.000010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Thorium, dissolved	7440-29-1	0.00011	0.00010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Tin, dissolved	7440-31-5	<0.00010	0.00010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Titanium, dissolved	7440-32-6	0.00241	0.00030	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Tungsten, dissolved	7440-33-7	0.00111	0.00010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Uranium, dissolved	7440-61-1	0.00391	0.000010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Vanadium, dissolved	7440-62-2	0.00327	0.00050	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Zinc, dissolved	7440-66-6	0.0016	0.0010	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Zirconium, dissolved	7440-67-7	<0.00020	0.00020	mg/L	E421/EO	20-Sep-2023	20-Sep-2023	1143515
Dissolved metals filtration location		Field	_	-	EP421/EO	-	20-Sep-2023	1143515
Speciated Metals							1	
Chromium, hexavalent [Cr VI], dissolved	18540-29-9	<0.00050	0.00050	mg/L	E532A/EO	-	20-Sep-2023	1144038
Aggregate Organics								
Adsorbable organic halogens, [AOX], (as CI)		0.020	10	mg/L	AOX/1D	-	06-Oct-2023	-
Chemical oxygen demand [COD]		55	10	mg/L	E559-L/EO	-	20-Sep-2023	1143738
Phenols, total (4AAP)		<0.0010	0.0010	mg/L	E562/EO	21-Sep-2023	21-Sep-2023	1146134
Volatile Organic Compounds								
Benzene	71-43-2	<0.50	0.50	μg/L	E611A/EO	21-Sep-2023	21-Sep-2023	1143344
Ethylbenzene	100-41-4	<0.50	0.50	μg/L	E611A/EO	21-Sep-2023	21-Sep-2023	1143344
Toluene	108-88-3	<0.50	0.50	μg/L	E611A/EO	21-Sep-2023	21-Sep-2023	1143344
Xylene, m+p-	179601-23-1	<0.40	0.40	μg/L	E611A/EO	21-Sep-2023	21-Sep-2023	1143344
Xylene, o-	95-47-6	<0.30	0.30	μg/L	E611A/EO	21-Sep-2023	21-Sep-2023	1143344
Xylenes, total	1330-20-7	<0.50	0.50	μg/L	E611A/EO	21-Sep-2023	21-Sep-2023	1143344
Hydrocarbons								
F1 (C6-C10)		<100	100	μg/L	E581.F1/EO	21-Sep-2023	21-Sep-2023	1143345
F1-BTEX		<100	100	μg/L	EC580/EO	-	25-Sep-2023	_
F2 (C10-C16)		<100	100	μg/L	E601/EO	20-Sep-2023	20-Sep-2023	1143263
Hydrocarbons Surrogates								
Bromobenzotrifluoride, 2- (F2-F4 surrogate)	392-83-6	104	1.0	%	E601/EO	20-Sep-2023	20-Sep-2023	1143263

Page : 11 of 12

Work Order : EO2308479 Amendment 1

Client : Clean Harbors Environmental Services, Inc.
Project : 2023 Table 4.3E Annual Pond chemistry

Analytical Results

EO2308479-003

Sub-Matrix: Water Client sample ID: Tipping Pad Pond

(Matrix: Water) Client sampling date / time: 19-Sep-2023 11:30

Analyte	CAS Number	Result	LOR	Unit	Method/Lab	Prep Date	Analysis Date	QCLot
Hydrocarbons Surrogates								
Dichlorotoluene, 3,4-	95-75-0	103	1.0	%	E581.F1/EO	21-Sep-2023	21-Sep-2023	1143345
Volatile Organic Compounds Surrogates								
Bromofluorobenzene, 4-	460-00-4	86.6	1.0	%	E611A/EO	21-Sep-2023	21-Sep-2023	1143344
Difluorobenzene, 1,4-	540-36-3	95.1	1.0	%	E611A/EO	21-Sep-2023	21-Sep-2023	1143344
Chlorinated Phenolics								
Chlorophenol, 2-	95-57-8	<0.30	0.30	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Dichlorophenol, 2,4-	120-83-2	<0.20	0.20	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Dichlorophenol, 2,6-	87-65-0	<0.20	0.20	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Methylphenol, 4-chloro-3-	59-50-7	<0.50	0.50	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Pentachlorophenol [PCP]	87-86-5	<0.50	0.50	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Tetrachlorophenol, 2,3,4,5-	4901-51-3	<0.50	0.50	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Tetrachlorophenol, 2,3,4,6-	58-90-2	<0.50	0.50	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Tetrachlorophenol, 2,3,5,6-	935-95-5	<0.50	0.50	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Trichlorophenol, 2,3,4-	15950-66-0	<0.50	0.50	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Trichlorophenol, 2,3,5-	933-78-8	<0.50	0.50	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Trichlorophenol, 2,4,5-	95-95-4	<0.50	0.50	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Trichlorophenol, 2,4,6-	88-06-2	<0.50	0.50	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Non-Chlorinated Phenolics								
Dimethylphenol, 2,4-	105-67-9	<0.50	0.50	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Dinitrophenol, 2,4-	51-28-5	<1.0	1.0	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Methylphenol, 2-	95-48-7	<0.50	0.50	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Methylphenol, 3+4-		<0.50	0.50	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Methylphenols, total		< 0.75	0.75	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Nitrophenol, 2-	88-75-5	<0.50	0.50	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Nitrophenol, 4-	100-02-7	<0.50	0.50	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Phenol	108-95-2	<0.50	0.50	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Phenol, 2-methyl-4,6-dinitro- [DNOC]	534-52-1	<2.0	2.0	μg/L	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Phenolics Surrogates								
Tribromophenol, 2,4,6-	118-79-6	111	1.0	%	E651C/WT	25-Sep-2023	26-Sep-2023	1152973
Polychlorinated Biphenyls								
Aroclor 1016	12674-11-2	<0.020	0.020	μg/L	E687/WT	25-Sep-2023	26-Sep-2023	1151415
Aroclor 1221	11104-28-2	<0.020	0.020	μg/L	E687/WT	25-Sep-2023	26-Sep-2023	1151415
Aroclor 1232	11141-16-5	<0.020	0.020	μg/L	E687/WT	25-Sep-2023	26-Sep-2023	1151415
Aroclor 1242	53469-21-9	<0.020	0.020	μg/L	E687/WT	25-Sep-2023	26-Sep-2023	1151415
Aroclor 1248	12672-29-6	<0.020	0.020	μg/L	E687/WT	25-Sep-2023	26-Sep-2023	1151415
Aroclor 1254	11097-69-1	<0.020	0.020	μg/L	E687/WT	25-Sep-2023	26-Sep-2023	1151415
Aroclor 1260	11096-82-5	<0.020	0.020	μg/L	E687/WT	25-Sep-2023	26-Sep-2023	1151415
Aroclor 1262	37324-23-5	<0.020	0.020	μg/L	E687/WT	25-Sep-2023	26-Sep-2023	1151415
Aroclor 1268	11100-14-4	<0.020	0.020	μg/L	E687/WT	25-Sep-2023	26-Sep-2023	1151415
Polychlorinated biphenyls [PCBs], total		<0.060	0.060	μg/L	E687/WT	25-Sep-2023	26-Sep-2023	1151415
Polychlorinated Biphenyls Surrogates							, , , ,	
Decachlorobiphenyl	2051-24-3	94.6	0.1	%	E687/WT	25-Sep-2023	26-Sep-2023	1151415
Tetrachloro-m-xylene	877-09-8	92.6	0.1	%	E687/WT	25-Sep-2023	26-Sep-2023	1151415

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Page : 12 of 12

Work Order : EO2308479 Amendment 1

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **EO2308479** Page : 1 of 20

Amendment :

Client : Clean Harbors Environmental Services, Inc. Laboratory : ALS Environmental - Edmonton

Contact :Todd Webb Account Manager : Megha Walia

Address : PO Box 390, 50114 Range Road 173 Address : 9450 - 17 Avenue NW

Ryley AB Canada T0B4A0 Edmonton, Alberta Canada T6N 1M9

Issue Date

: 19-Oct-2023 13:11

 Telephone
 :780 663 2513
 Telephone
 : +1 780 413 5227

 Project
 :2023 Table 4.3E Annual Pond chemistry
 Date Samples Received
 : 19-Sep-2023 15:43

PO : 236266 C-O-C number · ----

Sampler : TW
Site : Table 4.3E

Table 4.3E

Quote number : EO22-CHES100-008

No. of samples received :3

No. of samples analysed :3

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

<u>No</u> Quality Control Sample Frequency Outliers occur.

Page : 3 of 20

Work Order : EO2308479 Amendment 1

Client : Clean Harbors Environmental Services, Inc.
Project : 2023 Table 4.3E Annual Pond chemistry

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					E۱	/aluation: ≭ =	Holding time excee	edance ; 🔻	= Within	Holding Time
Analyte Group : Analytical Method	Method	Sampling Date	Exti	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Aggregate Organics : Adsorbable Organic Halides (AOX) by Adsortption and Coul	ometric Titration									
Amber glass/Teflon lined cap Pond B	AOX	19-Sep-2023					06-Oct-2023	180 days	17 days	✓
Aggregate Organics : Adsorbable Organic Halides (AOX) by Adsortption and Coul	ometric Titration									
Amber glass/Teflon lined cap Pond C	AOX	19-Sep-2023					06-Oct-2023	180 days	17 days	✓
Aggregate Organics : Adsorbable Organic Halides (AOX) by Adsortption and Coul	ometric Titration									
Amber glass/Teflon lined cap Tipping Pad Pond	AOX	19-Sep-2023					06-Oct-2023	180 days	17 days	✓
Aggregate Organics : Chemical Oxygen Demand by Colourimetry (Low Level)										
Amber glass total (sulfuric acid) Pond B	E559-L	19-Sep-2023					20-Sep-2023	28 days	1 days	✓
Aggregate Organics : Chemical Oxygen Demand by Colourimetry (Low Level)										
Amber glass total (sulfuric acid) Pond C	E559-L	19-Sep-2023					20-Sep-2023	28 days	1 days	✓
Aggregate Organics : Chemical Oxygen Demand by Colourimetry (Low Level)										
Amber glass total (sulfuric acid) Tipping Pad Pond	E559-L	19-Sep-2023					20-Sep-2023	28 days	1 days	✓
Aggregate Organics : Phenols (4AAP) in Water by Colorimetry										
Amber glass total (sulfuric acid) Pond B	E562	19-Sep-2023	21-Sep-2023	28 days	2 days	✓	21-Sep-2023	28 days	2 days	✓

Page 4 of 20

Work Order · EO2308479 Amendment 1

Client Clean Harbors Environmental Services, Inc. 2023 Table 4.3E Annual Pond chemistry **Project**

HDPE

Pond B

Matrix: Water Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time Extraction / Preparation Analysis Analyte Group: Analytical Method Method Sampling Date Container / Client Sample ID(s) **Holding Times** Preparation **Holding Times** Eval Analysis Date Eval Rec Actual Rec Actual Date Aggregate Organics : Phenols (4AAP) in Water by Colorimetry Amber glass total (sulfuric acid) E562 19-Sep-2023 1 21-Sep-2023 1 Pond C 21-Sep-2023 2 days 28 days 2 days 28 days Aggregate Organics : Phenols (4AAP) in Water by Colorimetry Amber glass total (sulfuric acid) Tipping Pad Pond E562 19-Sep-2023 21-Sep-2023 28 2 days 1 21-Sep-2023 28 days 2 days 1 days Anions and Nutrients : Ammonia by Fluorescence Amber glass total (sulfuric acid) Pond B E298 19-Sep-2023 20-Sep-2023 1 20-Sep-2023 28 days 1 days 1 1 days 28 days Anions and Nutrients: Ammonia by Fluorescence Amber glass total (sulfuric acid) 1 Pond C E298 19-Sep-2023 20-Sep-2023 28 1 days 20-Sep-2023 28 days 1 days 1 days Anions and Nutrients : Ammonia by Fluorescence Amber glass total (sulfuric acid) E298 19-Sep-2023 20-Sep-2023 1 20-Sep-2023 28 days 1 Tipping Pad Pond 1 days 1 days 28 days Anions and Nutrients : Chloride in Water by IC HDPE E235.CI 19-Sep-2023 1 1 days Pond B 20-Sep-2023 28 1 days 20-Sep-2023 28 days 1 days Anions and Nutrients : Chloride in Water by IC HDPE Pond C E235.CI 19-Sep-2023 20-Sep-2023 1 20-Sep-2023 28 days 1 days 1 days 28 days Anions and Nutrients : Chloride in Water by IC HDPE 20-Sep-2023 Tipping Pad Pond E235.CI 19-Sep-2023 20-Sep-2023 28 1 days 1 28 days 1 days ✓ days Anions and Nutrients : Fluoride in Water by IC

19-Sep-2023

20-Sep-2023

1

1 days

28 days 20-Sep-2023

E235.F

1

28 days 1 days

Page : 5 of 20

Work Order : EO2308479 Amendment 1

Client : Clean Harbors Environmental Services, Inc.
Project : 2023 Table 4.3E Annual Pond chemistry

Matrix: Water

Evaluation: **x** = Holding time exceedance ; ✓ = Within Holding Time

				= Holding time exceedance; ✓ = Within Holding Tir						
Analyte Group : Analytical Method	Method	Sampling Date	Ex	traction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
Pond C	E235.F	19-Sep-2023	20-Sep-2023	28	1 days	✓	20-Sep-2023	28 days	1 days	✓
				days						
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
Tipping Pad Pond	E235.F	19-Sep-2023	20-Sep-2023	28	1 days	1	20-Sep-2023	28 days	1 days	✓
		· ·	·	days	,		·		,	
Anions and Nutrients : Nitrate in Water by IC				,						
HDPE				<u> </u>	<u> </u>		l			
Pond B	E235.NO3	19-Sep-2023	20-Sep-2023	3 days	1 days	✓	20-Sep-2023	3 days	1 days	✓
			, , ,	,						
Anions and Nutrients : Nitrate in Water by IC										
HDPE									1	
Pond C	E235.NO3	19-Sep-2023	20-Sep-2023	3 days	1 days	1	20-Sep-2023	3 days	1 days	✓
1 old o		10 COP 2020	20-00p-2020	o days	1 days		20-00p-2020	o days	1 days	•
Anions and Nutrients : Nitrate in Water by IC							I			
HDPE	E235.NO3	19-Sep-2023	20-Sep-2023	3 days	1 days	✓	20-Sep-2023	3 days	1 days	✓
Tipping Pad Pond	E233.NO3	19-3ep-2023	20-3ep-2023	3 uays	1 uays	•	20-3ep-2023	3 uays	i uays	•
Anions and Nutrients : Nitrite in Water by IC										
HDPE	E005 NO0	40 0 2002	00.00000	0.1	4 1	√	00.0 0000	0.1	4 1	✓
Pond B	E235.NO2	19-Sep-2023	20-Sep-2023	3 days	1 days	•	20-Sep-2023	3 days	1 days	▼
Anions and Nutrients : Nitrite in Water by IC										
HDPE						,				,
Pond C	E235.NO2	19-Sep-2023	20-Sep-2023	3 days	1 days	✓	20-Sep-2023	3 days	1 days	✓
Anions and Nutrients : Nitrite in Water by IC										
HDPE										
Tipping Pad Pond	E235.NO2	19-Sep-2023	20-Sep-2023	3 days	1 days	✓	20-Sep-2023	3 days	1 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
Pond B	E235.SO4	19-Sep-2023	20-Sep-2023	28	1 days	✓	20-Sep-2023	28 days	1 days	✓
	1			days			I			

Page 6 of 20

Work Order : EO2308479 Amendment 1

Matrix: Water					E۱	/aluation: ≭ =	Holding time excee	edance ; 🔻	= Within	Holding Time
Analyte Group : Analytical Method	Method	Sampling Date	Ext	raction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Sulfate in Water by IC										
HDPE Pond C	E235.SO4	19-Sep-2023	20-Sep-2023	28 days	1 days	✓	20-Sep-2023	28 days	1 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE Tipping Pad Pond	E235.SO4	19-Sep-2023	20-Sep-2023	28 days	1 days	✓	20-Sep-2023	28 days	1 days	✓
Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (0.02 mg/L)										
Amber glass dissolved (sulfuric acid) Pond B	E375-H	19-Sep-2023	25-Sep-2023	28 days	6 days	√	26-Sep-2023	28 days	7 days	✓
Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (0.02 mg/L)										
Amber glass dissolved (sulfuric acid) Pond C	E375-H	19-Sep-2023	25-Sep-2023	28 days	6 days	✓	26-Sep-2023	28 days	7 days	✓
Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (0.02 mg/L)										
Amber glass dissolved (sulfuric acid) Tipping Pad Pond	E375-H	19-Sep-2023	25-Sep-2023	28 days	6 days	✓	26-Sep-2023	28 days	7 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid) Pond B	E318	19-Sep-2023	21-Sep-2023	28 days	2 days	✓	21-Sep-2023	28 days	2 days	4
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid) Pond C	E318	19-Sep-2023	21-Sep-2023	28 days	2 days	1	21-Sep-2023	28 days	2 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid) Tipping Pad Pond	E318	19-Sep-2023	21-Sep-2023	28 days	2 days	✓	21-Sep-2023	28 days	2 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.02 mg/L)										
Amber glass total (sulfuric acid) Pond B	E372	19-Sep-2023	25-Sep-2023	28 days	6 days	✓	26-Sep-2023	28 days	7 days	✓

Page 7 of 20

Work Order : EO2308479 Amendment 1

Client Clean Harbors Environmental Services, Inc. 2023 Table 4.3E Annual Pond chemistry Project

Matrix: Water					Ev	aluation: 🗴 =	Holding time exce	edance ; 🔹	= Within	Holding T
Analyte Group : Analytical Method	Method	Sampling Date	Ex	traction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Total Phosphorus by Colourimetry (0.02 mg/L)										
Amber glass total (sulfuric acid)										
Pond C	E372	19-Sep-2023	25-Sep-2023	28	6 days	✓	26-Sep-2023	28 days	7 days	✓
				days						
Anions and Nutrients : Total Phosphorus by Colourimetry (0.02 mg/L)										
Amber glass total (sulfuric acid)										
Tipping Pad Pond	E372	19-Sep-2023	25-Sep-2023	28	6 days	✓	26-Sep-2023	28 days	7 days	✓
				days						
Chlorinated Phenolics : Phenolics (Eastern Canada List with Nitro-Pheno	ols) by GC-MS							1		
Amber glass/Teflon lined cap		I								
Pond B	E651C	19-Sep-2023	25-Sep-2023	14	6 days	✓	26-Sep-2023	40 days	1 days	✓
				days						
Chlorinated Phenolics : Phenolics (Eastern Canada List with Nitro-Pheno	ols) by GC-MS									
Amber glass/Teflon lined cap										
Pond C	E651C	19-Sep-2023	25-Sep-2023	14	6 days	✓	26-Sep-2023	40 days	1 days	1
		·	,	days	1		· '		,	
Chlorinated Phenolics : Phenolics (Eastern Canada List with Nitro-Pheno	ols) by GC-MS			,						
Amber glass/Teflon lined cap										
Tipping Pad Pond	E651C	19-Sep-2023	25-Sep-2023	14	6 days	✓	26-Sep-2023	40 days	1 days	✓
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				days			' ' ' '		,	
Cyanidae : WAD Cyanida				,-						
Cyanides : WAD Cyanide UV-inhibited HDPE - total (sodium hydroxide)							I			
Pond B	E336	19-Sep-2023	22-Sep-2023	14	3 days	✓	22-Sep-2023	14 days	3 days	✓
1 ond B	2000	10 Cop 2020	22-00p-2020	days	o days		22-00p-2020	14 days	o days	
				uays						
Cyanides: WAD Cyanide				<u> </u>	T I		<u> </u>	1		
UV-inhibited HDPE - total (sodium hydroxide)	E336	10 Con 2022	22 Can 2022		2 days	✓	22 Con 2022	1.4 days	2 days	√
Pond C	E330	19-Sep-2023	22-Sep-2023	14	3 days	•	22-Sep-2023	14 days	3 days	•
				days						
Cyanides : WAD Cyanide										
UV-inhibited HDPE - total (sodium hydroxide)						,				
Tipping Pad Pond	E336	19-Sep-2023	22-Sep-2023	14	3 days	✓	22-Sep-2023	14 days	3 days	1
				days						
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved)										
Pond B	E421	19-Sep-2023	20-Sep-2023	180	1 days	✓	20-Sep-2023	180	1 days	✓
				days				days		

Page : 8 of 20

Work Order : EO2308479 Amendment 1

Client : Clean Harbors Environmental Services, Inc.
Project : 2023 Table 4.3E Annual Pond chemistry

Matrix: Water

Evaluation: **x** = Holding time exceedance ; ✓ = Within Holding Time

Matrix: Water						uluulion.	Holding time excee	Judinoo ,	***************************************	Troluing Time
Analyte Group : Analytical Method	Method	Sampling Date	Ext	raction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved)										
Pond C	E421	19-Sep-2023	20-Sep-2023	180	1 days	✓	20-Sep-2023	180	1 days	✓
				days				days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved)										
Tipping Pad Pond	E421	19-Sep-2023	20-Sep-2023	180	1 days	✓	20-Sep-2023	180	1 days	✓
		i i	·	days	,		'	days	,	
Hydrocarbons : CCME PHC - F1 by Headspace GC-FID								,-		
Glass vial (sodium bisulfate)							<u> </u>			
Pond B	E581.F1	19-Sep-2023	21-Sep-2023	14	2 days	✓	21-Sep-2023	14 days	2 days	✓
			,	days	,		, ,			
Hadronesham - COME BUG. Ed by Handaman CO EID				dayo						
Hydrocarbons : CCME PHC - F1 by Headspace GC-FID Glass vial (sodium bisulfate)							<u> </u>			
Pond C	E581.F1	19-Sep-2023	21-Sep-2023	14	2 days	✓	21-Sep-2023	14 days	2 days	✓
Folia G	2001.11	10-00p-2020	21-06p-2020	days	2 days	•	21-0ep-2020	14 days	2 days	*
				uays						
Hydrocarbons : CCME PHC - F1 by Headspace GC-FID				<u> </u>			1	<u> </u>		
Glass vial (sodium bisulfate)	E581.F1	10 Con 2022	04 Can 2002		O daye	√	04 Con 2002	1.1 days	O dovo	✓
Tipping Pad Pond	E301.F1	19-Sep-2023	21-Sep-2023	14	2 days	•	21-Sep-2023	14 days	2 days	•
				days						
Hydrocarbons : CCME PHCs - F2-F4 by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate)	5004	40.0 0000				,				
Pond B	E601	19-Sep-2023	20-Sep-2023	14	1 days	✓	20-Sep-2023	40 days	0 days	✓
				days						
Hydrocarbons : CCME PHCs - F2-F4 by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate)										
Pond C	E601	19-Sep-2023	20-Sep-2023	14	1 days	✓	20-Sep-2023	40 days	0 days	✓
				days						
Hydrocarbons : CCME PHCs - F2-F4 by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate)										
Tipping Pad Pond	E601	19-Sep-2023	20-Sep-2023	14	1 days	✓	20-Sep-2023	40 days	0 days	✓
				days						
Non-Chlorinated Phenolics : Phenolics (Eastern Canada List with Nitro-Phenols) I	by GC-MS									
Amber glass/Teflon lined cap										
Pond B	E651C	19-Sep-2023	25-Sep-2023	14	6 days	✓	26-Sep-2023	40 days	1 days	✓

Page 9 of 20

Work Order · EO2308479 Amendment 1

Client Clean Harbors Environmental Services, Inc. 2023 Table 4.3E Annual Pond chemistry **Project**

Matrix: Water

HDPE

HDPE

HDPE

HDPE

Pond B

Tipping Pad Pond

Physical Tests: Alkalinity Species by Titration

Physical Tests : Conductivity in Water

Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time Extraction / Preparation Analysis Analyte Group: Analytical Method Method Sampling Date Container / Client Sample ID(s) **Holding Times** Preparation **Holding Times** Eval Analysis Date Eval Rec Actual Rec Actual Date Non-Chlorinated Phenolics : Phenolics (Eastern Canada List with Nitro-Phenols) by GC-MS Amber glass/Teflon lined cap E651C 19-Sep-2023 1 1 days 1 25-Sep-2023 6 days 26-Sep-2023 40 days Pond C 14 days Non-Chlorinated Phenolics : Phenolics (Eastern Canada List with Nitro-Phenols) by GC-MS Amber glass/Teflon lined cap Tipping Pad Pond E651C 19-Sep-2023 25-Sep-2023 6 days 1 26-Sep-2023 40 days 1 days ✓ 14 days Organic / Inorganic Carbon: Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) E358-L 19-Sep-2023 20-Sep-2023 1 20-Sep-2023 1 Pond B 1 days 28 days 1 days 28 days Organic / Inorganic Carbon: Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) E358-L 1 Pond C 19-Sep-2023 20-Sep-2023 28 1 days 20-Sep-2023 28 days 1 days 1 days Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) E358-L 19-Sep-2023 20-Sep-2023 1 days 1 20-Sep-2023 28 days ✓ Tipping Pad Pond 1 days 28 days Physical Tests: Alkalinity Species by Titration E290 1 Pond B 19-Sep-2023 20-Sep-2023 14 1 days 21-Sep-2023 14 days 2 days 1 days Physical Tests : Alkalinity Species by Titration Pond C E290 19-Sep-2023 20-Sep-2023 21-Sep-2023 1 days 14 days 2 days 14 days

19-Sep-2023

19-Sep-2023

20-Sep-2023

20-Sep-2023

1 days

1 days

14 days

28 days 1

1

21-Sep-2023

21-Sep-2023

E290

E100

✓

1

14 days 2 days

28 days 2 days

Page : 10 of 20

Work Order : EO2308479 Amendment 1

Client : Clean Harbors Environmental Services, Inc.
Project : 2023 Table 4.3E Annual Pond chemistry

Matrix: Water

Evaluation: **x** = Holding time exceedance ; ✓ = Within Holding Time

Matrix: Water						valuation. ^ –	Holding time exce	euance,	– vvitriii	Holding Time
Analyte Group : Analytical Method	Method	Sampling Date	Ext	raction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Conductivity in Water										
HDPE										
Pond C	E100	19-Sep-2023	20-Sep-2023	28	1 days	✓	21-Sep-2023	28 days	2 days	✓
				days						
Physical Tests : Conductivity in Water										
HDPE										
Tipping Pad Pond	E100	19-Sep-2023	20-Sep-2023	28	1 days	1	21-Sep-2023	28 days	2 days	✓
		· ·	•	days						
Physical Tests : pH by Meter										
HDPE					<u> </u>		I			
Pond B	E108	19-Sep-2023	20-Sep-2023	0.25	24 hrs	×	21-Sep-2023	0.25	48 hrs	3¢
		' ' ' '	, , ,	hrs		EHTR-FM	, , ,	hrs		EHTR-FM
District Tests will be Meter										
Physical Tests : pH by Meter HDPE							<u> </u>			
Pond C	E108	19-Sep-2023	20-Sep-2023	0.25	24 hrs	æ	21-Sep-2023	0.25	48 hrs	×
Folia C	L100	19-0ep-2020	20-3 6 p-2023	0.25 hrs	24 1115	EHTR-FM	21-3ep-2023	0.25 hrs	401115	EHTR-FM
				1115		LITTIC-I IVI		1115		LITTIX-I IVI
Physical Tests : pH by Meter				T	T	I				
HDPE	F400	40.0 0000	00 0 0000		04 5	*	04 0 0000		40 5	*
Tipping Pad Pond	E108	19-Sep-2023	20-Sep-2023	0.25	24 hrs		21-Sep-2023	0.25	48 hrs	
				hrs		EHTR-FM		hrs		EHTR-FM
Physical Tests : TSS by Gravimetry										
HDPE										
Pond B	E160	19-Sep-2023					21-Sep-2023	7 days	2 days	✓
Physical Tests : TSS by Gravimetry										
HDPE										
Pond C	E160	19-Sep-2023					21-Sep-2023	7 days	2 days	✓
Physical Tests : TSS by Gravimetry										
HDPE										
Tipping Pad Pond	E160	19-Sep-2023					21-Sep-2023	7 days	2 days	✓
Polychlorinated Biphenyls : PCB Aroclors by GC-MS								1		
Amber glass/Teflon lined cap										
Pond B	E687	19-Sep-2023	25-Sep-2023	365	6 days	✓	26-Sep-2023	40 days	1 days	✓
·				days	,-			12 22,0	,5	
				aayo						

Page : 11 of 20

Work Order : EO2308479 Amendment 1

Client : Clean Harbors Environmental Services, Inc.
Project : 2023 Table 4.3E Annual Pond chemistry

Matrix: Water

Evaluation:

Holding time exceedance;

Analysis

Eval

Analysis Date

Holding Times

Eval

Analyte Group : Analytical Method	Method	Sampling Date	Ext	raction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Polychlorinated Biphenyls : PCB Aroclors by GC-MS										
Amber glass/Teflon lined cap										
Pond C	E687	19-Sep-2023	25-Sep-2023	365 days	6 days	✓	26-Sep-2023	40 days	1 days	✓
Polychlorinated Biphenyls : PCB Aroclors by GC-MS										
Amber glass/Teflon lined cap										
Tipping Pad Pond	E687	19-Sep-2023	25-Sep-2023	365 days	6 days	✓	26-Sep-2023	40 days	1 days	✓
Speciated Metals : Dissolved Hexavalent Chromium (Cr VI) by IC										
UV-inhibited HDPE - dissolved (sodium hydroxide) Pond B	E532A	19-Sep-2023					20-Sep-2023	28 days	1 days	✓
Speciated Metals : Dissolved Hexavalent Chromium (Cr VI) by IC										
UV-inhibited HDPE - dissolved (sodium hydroxide) Pond C	E532A	19-Sep-2023					20-Sep-2023	28 days	1 days	✓
Speciated Metals : Dissolved Hexavalent Chromium (Cr VI) by IC										
UV-inhibited HDPE - dissolved (sodium hydroxide)										
Tipping Pad Pond	E532A	19-Sep-2023					20-Sep-2023	28 days	1 days	✓
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid) Pond B	E508	19-Sep-2023	20-Sep-2023	28 days	1 days	✓	20-Sep-2023	28 days	1 days	✓
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid) Pond C	E508	19-Sep-2023	20-Sep-2023	28 days	1 days	✓	20-Sep-2023	28 days	1 days	✓
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid) Tipping Pad Pond	E508	19-Sep-2023	20-Sep-2023	28 days	1 days	4	20-Sep-2023	28 days	1 days	✓
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved) Pond B	E420	19-Sep-2023	20-Sep-2023	180 days	1 days	✓	20-Sep-2023	180 days	1 days	✓

Page : 12 of 20

Work Order : EO2308479 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : 2023 Table 4.3E Annual Pond chemistry

Matrix: Water

Evaluation: × = Holding time exceedance : ✓ = Within Holding Time

atrix: water					⊏v	aluation. ^ -	Holding time exce	euance, •	— vviti iii i	Holding
Analyte Group : Analytical Method	Method	Sampling Date	Ext	raction / Pi	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eva
			Date	Rec	Actual			Rec	Actual	
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										
Pond C	E420	19-Sep-2023	20-Sep-2023	180	1 days	✓	20-Sep-2023	180	1 days	✓
				days				days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										
Tipping Pad Pond	E420	19-Sep-2023	20-Sep-2023	180	1 days	✓	20-Sep-2023	180	1 days	✓
				days				days		
/olatile Organic Compounds : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate)										
Pond B	E611A	19-Sep-2023	21-Sep-2023	14	2 days	✓	21-Sep-2023	14 days	2 days	✓
				days						
/olatile Organic Compounds : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate)										
Pond C	E611A	19-Sep-2023	21-Sep-2023	14	2 days	✓	21-Sep-2023	14 days	2 days	✓
				days						
/olatile Organic Compounds : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate)										
Tipping Pad Pond	E611A	19-Sep-2023	21-Sep-2023	14	2 days	✓	21-Sep-2023	14 days	2 days	✓
				days						

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

Rec. HT: ALS recommended hold time (see units).

Page : 13 of 20

Work Order : EO2308479 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : 2023 Table 4.3E Annual Pond chemistry

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			C	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Alkalinity Species by Titration	E290	1143528	1	14	7.1	5.0	1
Ammonia by Fluorescence	E298	1143947	1	20	5.0	5.0	1
BTEX by Headspace GC-MS	E611A	1143344	1	20	5.0	5.0	✓
CCME PHC - F1 by Headspace GC-FID	E581.F1	1143345	1	14	7.1	5.0	1
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	1143738	1	13	7.6	5.0	✓
Chloride in Water by IC	E235.CI	1143727	1	20	5.0	5.0	√
Conductivity in Water	E100	1143527	1	15	6.6	5.0	1
Dissolved Hexavalent Chromium (Cr VI) by IC	E532A	1144038	1	20	5.0	5.0	1
Dissolved Metals in Water by CRC ICPMS	E421	1143515	1	20	5.0	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	1144576	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	1143724	1	19	5.2	5.0	✓
Nitrate in Water by IC	E235.NO3	1143725	1	19	5.2	5.0	1
Nitrite in Water by IC	E235.NO2	1143726	1	19	5.2	5.0	√
pH by Meter	E108	1143526	1	20	5.0	5.0	✓
Phenols (4AAP) in Water by Colorimetry	E562	1146134	1	19	5.2	5.0	√
Sulfate in Water by IC	E235.SO4	1143728	1	20	5.0	5.0	√
Total Dissolved Phosphorus by Colourimetry (0.02 mg/L)	E375-H	1152267	1	4	25.0	5.0	1
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	1143331	1	20	5.0	5.0	√
Total Mercury in Water by CVAAS	E508	1143228	1	5	20.0	5.0	√
Total Metals in Water by CRC ICPMS	E420	1143469	1	16	6.2	5.0	√
Total Phosphorus by Colourimetry (0.02 mg/L)	E372	1152274	1	18	5.5	5.0	√
TSS by Gravimetry	E160	1143359	1	20	5.0	5.0	1
WAD Cyanide	E336	1146403	1	13	7.6	5.0	✓
Laboratory Control Samples (LCS)							
Alkalinity Species by Titration	E290	1143528	1	14	7.1	5.0	1
Ammonia by Fluorescence	E298	1143947	1	20	5.0	5.0	1
BTEX by Headspace GC-MS	E611A	1143344	1	20	5.0	5.0	√
CCME PHC - F1 by Headspace GC-FID	E581.F1	1143345	1	14	7.1	5.0	1
CCME PHCs - F2-F4 by GC-FID	E601	1143263	1	20	5.0	5.0	√
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	1143738	1	13	7.6	5.0	1
Chloride in Water by IC	E235.CI	1143727	1	20	5.0	5.0	√
Conductivity in Water	E100	1143527	1	15	6.6	5.0	√
Dissolved Hexavalent Chromium (Cr VI) by IC	E532A	1144038	1	20	5.0	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	1143515	1	20	5.0	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	1144576	1	20	5.0	5.0	1
Fluoride in Water by IC	E235.F	1143724	1	19	5.2	5.0	<u> </u>

Page : 14 of 20

Work Order : EO2308479 Amendment 1

Quality Control Sample Type			Co	ount)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
Nitrate in Water by IC	E235.NO3	1143725	1	19	5.2	5.0	1
Nitrite in Water by IC	E235.NO2	1143726	1	19	5.2	5.0	<u> </u>
PCB Aroclors by GC-MS	E687	1151415	1	3	33.3	4.7	
pH by Meter	E108	1143526	1	20	5.0	5.0	<u> </u>
Phenolics (Eastern Canada List with Nitro-Phenols) by GC-MS	E651C	1152973	1	10	10.0	5.0	<u> </u>
Phenols (4AAP) in Water by Colorimetry	E562	1146134	1	19	5.2	5.0	<u> </u>
Sulfate in Water by IC	E235.SO4	1143728	1	20	5.0	5.0	<u> </u>
Total Dissolved Phosphorus by Colourimetry (0.02 mg/L)	E375-H	1152267	1	4	25.0	5.0	
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	1143331	1	20	5.0	5.0	
Total Mercury in Water by CVAAS	E508	1143228	1	5	20.0	5.0	<u> </u>
Total Metals in Water by CRC ICPMS	E420	1143469	1	16	6.2	5.0	<u> </u>
Total Phosphorus by Colourimetry (0.02 mg/L)	E372	1152274	1	18	5.5	5.0	<u> </u>
TSS by Gravimetry	E160	1143359	1	20	5.0	5.0	
WAD Cyanide	E336	1146403	1	13	7.6	5.0	
Method Blanks (MB)							
Alkalinity Species by Titration	E290	1143528	1 1	14	7.1	5.0	1
Ammonia by Fluorescence	E298	1143947	1	20	5.0	5.0	
BTEX by Headspace GC-MS	E611A	1143344	1	20	5.0	5.0	
CCME PHC - F1 by Headspace GC-FID	E581.F1	1143345	1	14	7.1	5.0	
CCME PHCs - F2-F4 by GC-FID	E601	1143263	1	20	5.0	5.0	
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	1143738	1	13	7.6	5.0	<u> </u>
Chloride in Water by IC	E235.CI	1143727	1	20	5.0	5.0	
Conductivity in Water	E100	1143527	1	15	6.6	5.0	<u> </u>
Dissolved Hexavalent Chromium (Cr VI) by IC	E532A	1144038	1	20	5.0	5.0	
Dissolved Metals in Water by CRC ICPMS	E421	1143515	1	20	5.0	5.0	
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	1144576	1	20	5.0	5.0	<u> </u>
Fluoride in Water by IC	E235.F	1143724	1	19	5.2	5.0	
Nitrate in Water by IC	E235.NO3	1143725	1	19	5.2	5.0	<u> </u>
Nitrite in Water by IC	E235.NO2	1143726	1	19	5.2	5.0	
PCB Aroclors by GC-MS	E687	1151415	1	3	33.3	4.7	
Phenolics (Eastern Canada List with Nitro-Phenols) by GC-MS	E651C	1152973	1	10	10.0	5.0	
Phenols (4AAP) in Water by Colorimetry	E562	1146134	1	19	5.2	5.0	
Sulfate in Water by IC	E235.SO4	1143728	1	20	5.0	5.0	<u> </u>
Total Dissolved Phosphorus by Colourimetry (0.02 mg/L)	E375-H	1152267	1	4	25.0	5.0	<u> </u>
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	1143331	1	20	5.0	5.0	
Total Mercury in Water by CVAAS	E508	1143228	1	5	20.0	5.0	
Total Metals in Water by CRC ICPMS	E420	1143469	1	16	6.2	5.0	
Total Phosphorus by Colourimetry (0.02 mg/L)	E372	1152274	1	18	5.5	5.0	
· · · · · · · · · · · · · · · · · · ·	LUIZ	1	1	20	3.0	0	

Page : 15 of 20

Work Order : EO2308479 Amendment 1

Matrix: Water		Evaluati	on: × = QC frequ	ency outside sp	ecification; ✓ = (QC frequency wit	hin specificatio
Quality Control Sample Type			C	ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Method Blanks (MB) - Continued							
WAD Cyanide	E336	1146403	1	13	7.6	5.0	1
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	1143947	1	20	5.0	5.0	✓
BTEX by Headspace GC-MS	E611A	1143344	1	20	5.0	5.0	✓
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	1143738	1	13	7.6	5.0	✓
Chloride in Water by IC	E235.CI	1143727	1	20	5.0	5.0	✓
Dissolved Hexavalent Chromium (Cr VI) by IC	E532A	1144038	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	1143515	1	20	5.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	1144576	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	1143724	1	19	5.2	5.0	✓
Nitrate in Water by IC	E235.NO3	1143725	1	19	5.2	5.0	✓
Nitrite in Water by IC	E235.NO2	1143726	1	19	5.2	5.0	✓
Phenols (4AAP) in Water by Colorimetry	E562	1146134	1	19	5.2	5.0	✓
Sulfate in Water by IC	E235.SO4	1143728	1	20	5.0	5.0	✓
Total Dissolved Phosphorus by Colourimetry (0.02 mg/L)	E375-H	1152267	1	4	25.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	1143331	1	20	5.0	5.0	✓
Total Mercury in Water by CVAAS	E508	1143228	1	5	20.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	1143469	1	16	6.2	5.0	✓
Total Phosphorus by Colourimetry (0.02 mg/L)	E372	1152274	1	18	5.5	5.0	✓
WAD Cyanide	E336	1146403	1	13	7.6	5.0	√

Page : 16 of 20

Work Order : EO2308479 Amendment 1

Client : Clean Harbors Environmental Services, Inc.
Project : 2023 Table 4.3E Annual Pond chemistry

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Adsorbable Organic Halides (AOX) by Adsortption and Coulometric Titration	AOX Kelso - Environmental - 1317 South 13th Avenue Kelso Washington DC (District of Columbia) United	Water	EPA 1650C	Organic halide in water is determined by adsorption onto granular activated carbon (GAC), washing the adsorbed sample and GAC to remove inorganic halide, combustion of the sample and GAC to form the hydrogen halide, and titration of the hydrogen halide with a micro-coulometer.
Conductivity in Water	States 98626 E100 ALS Environmental - Edmonton	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108 ALS Environmental - Edmonton	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C). For high accuracy test results, pH should be measured in the field within the recommended 15 minute hold time.
TSS by Gravimetry	E160 ALS Environmental - Edmonton	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
Chloride in Water by IC	E235.Cl ALS Environmental - Edmonton	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
Fluoride in Water by IC	E235.F ALS Environmental - Edmonton	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Nitrite in Water by IC	E235.NO2 ALS Environmental - Edmonton	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Nitrate in Water by IC	E235.NO3 ALS Environmental - Edmonton	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.

Page : 17 of 20

Work Order : EO2308479 Amendment 1

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV
	ALS Environmental -			detection.
	Edmonton			
Alkalinity Species by Titration	E290	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total
	ALS Environmental -			alkalinity values.
Ammonia by Fluorescence	Edmonton E298	Water	Method Fialab 100,	Appropria in water is determined by systemated continuous flow analysis with mambrane
Animonia by Fidorescence	E290	Water	2018	Ammonia in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde).
	ALS Environmental - Edmonton			This method is approved under US EPA 40 CFR Part 136 (May 2021)
Total Kjeldahl Nitrogen by Fluorescence (Low	E318	Water	Method Fialab 100,	TKN in water is determined by automated continuous flow analysis with membrane
Level)	2010		2018	diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde).
	ALS Environmental -			This method is approved under US EPA 40 CFR Part 136 (May 2021).
	Edmonton			
WAD Cyanide	E336	Water	APHA 4500-CN I (mod)	Weak Acid Dissociable (WAD) cyanide is determined by Continuous Flow Analyzer (CFA) with in-line distillation followed by colourmetric analysis.
	ALS Environmental -			
	Waterloo			
Dissolved Organic Carbon by Combustion	E358-L	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a
(Low Level)	ALO F			direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and
	ALS Environmental - Edmonton			purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are
	Lumonton			purged off with IC. For samples where the majority of DC (dissolved carbon) is
				comprised of IC (which is common), this method is more accurate and more reliable than
				the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (0.02 mg/L)	E372	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
	ALS Environmental -			persuitate algestion of the sample.
	Winnipeg			
Total Dissolved Phosphorus by Colourimetry	E375-H	Water	APHA 4500-P E (mod).	Total Dissolved Phosphorus is determined colourimetrically using a discrete analyzer
(0.02 mg/L)				after filtration through a 0.45 micron filter followed by heated persulfate digestion of the
	ALS Environmental -			sample.
Tatal Matala in Water by ODG IODMC	Winnipeg	10/-4		
Total Metals in Water by CRC ICPMS	E420	Water	EPA 200.2/6020B	Water samples are digested with nitric and hydrochloric acids, and analyzed by
	ALS Environmental -		(mod)	Collision/Reaction Cell ICPMS.
	Edmonton			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered
				by this method.
Dissolved Metals in Water by CRC ICPMS	E421	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS.
	ALS Environmental -		0020D (IIIOU)	COMSIDITION OF THE PROPERTY OF
	Edmonton			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered

Page : 18 of 20

Work Order : EO2308479 Amendment 1

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Total Mercury in Water by CVAAS	E508	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS
	ALS Environmental -			mar starmous smerius, and analyzed by 6474 to
	Edmonton			
Dissolved Hexavalent Chromium (Cr VI) by IC	E532A	Water	APHA 3500-Cr C (Ion	Hexavalent Chromium is measured by Ion chromatography-Post column reaction and UV
			Chromatography)	detection.
	ALS Environmental -			
	Edmonton	107.1	4 DU 14 5000 D (1)	sample pretreatment involved field or lab filtration following by sample preservation.
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	Water	APHA 5220 D (mod)	Samples are analyzed using the closed reflux colourimetric method.
	ALS Environmental -			
Di L (AAAD); W. L. O. L. L.	Edmonton	107.1	EDA 0000	
Phenols (4AAP) in Water by Colorimetry	E562	Water	EPA 9066	This automated method is based on the distillation of phenol and subsequent reaction of the distillate with alkaline ferricyanide (K3Fe(CN)6) and 4-amino-antipyrine (4-AAP) to
	ALS Environmental -			form a red complex which is measured colorimetrically.
	Edmonton			
CCME PHC - F1 by Headspace GC-FID	E581.F1	Water	CCME PHC in Soil - Tier	, , , , , , , , , , , , , , , , , , , ,
			1	headspace vials and are heated and agitated on the headspace autosampler, causing
	ALS Environmental -			VOCs to partition between the aqueous phase and the headspace in accordance with
	Edmonton			Henry's law.
				Analytical methods for CCME Petroleum Hydrocarbons (PHCs) are validated to comply
				fully with the Reference Method for the Canada-Wide Standard for PHC. Unless
				qualified, all required quality control criteria of the CCME PHC method have been met,
				including response factor and linearity requirements.
CCME PHCs - F2-F4 by GC-FID	E601	Water	CCME PHC in Soil - Tier	Sample extracts are analyzed by GC-FID for CCME hydrocarbon fractions (F2-F4).
	ALS Environmental -			Analytical methods for CCME Petroleum Hydrocarbons (PHCs) are validated to comply
	Edmonton			fully with the Reference Method for the Canada-Wide Standard for PHC. Unless
				qualified, all required quality control criteria of the CCME PHC method have been met,
				including response factor and linearity requirements.
BTEX by Headspace GC-MS	E611A	Water	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS.
	ALO Fordinancia del			Samples are prepared in headspace vials and are heated and agitated on the
	ALS Environmental -			headspace autosampler, causing VOCs to partition between the aqueous phase and
Dhanalias (Fastern Canada List	Edmonton	Water	EPA 8270E (mod)	the headspace in accordance with Henry's law. Phenolics are analyzed by GC-MS.
Phenolics (Eastern Canada List with Nitro-Phenols) by GC-MS	E651C	vvalci	LI A 02/OL (IIIOU)	Therionics are analyzed by GO-ING.
With Mitto-i Heliols) by GO-IVIG	ALS Environmental -			
	Waterloo			
PCB Aroclors by GC-MS	E687	Water	EPA 8270E (mod)	PCB Aroclors are analyzed by GC-MS
	ALS Environmental -			
	Waterloo			

Page : 19 of 20

Work Order : EO2308479 Amendment 1

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Hardness (Calculated)	EC100	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and
,				Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers
	ALS Environmental -			to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially
	Edmonton			calculated from dissolved Calcium and Magnesium concentrations, because it is a
				property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA
				Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are
	ALS Environmental -			used where available. Minor ions are included where data is present.
	Edmonton			Ion Balance cannot be calculated accurately for waters with very low electrical
				conductivity (EC).
TDS in Water (Calculation)	EC103	Water	APHA 1030E (mod)	Total Dissolved Solids is calculated based on guidance from APHA Standard Methods
				(1030E Checking Correctness of Analysis). Dissolved species are used where
	ALS Environmental -			available. Minor ions are included where data is present.
	Edmonton			
Nitrate and Nitrite (as N) (Calculation)	EC235.N+N	Water	EPA 300.0	Nitrate and Nitrite (as N) is a calculated parameter. Nitrate and Nitrite (as N) = Nitrite (as
				N) + Nitrate (as N).
	ALS Environmental -			
F1-BTEX	Edmonton	\\/-t		
FI-BIEX	EC580	Water	CCME PHC in Soil - Tier	F1-BTEX is calculated as follows: F1-BTEX = F1 (C6-C10) minus benzene, toluene,
	ALS Environmental -		1	ethylbenzene and xylenes (BTEX).
	Edmonton			
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
	ALO Francisco de la			
	ALS Environmental - Edmonton			
	Famonion			
Digastion for TKN in water		Motor	A DU I A 4500 N D	
Digestion for TKN in water	EP318	Water	APHA 4500-Norg D	Samples are digested at high temperature using Sulfuric Acid with Copper catalyst,
Digestion for TKN in water	EP318	Water	APHA 4500-Norg D (mod)	which converts organic nitrogen sources to Ammonia, which is then quantified by the
Digestion for TKN in water	EP318 ALS Environmental -	Water	· ·	which converts organic nitrogen sources to Ammonia, which is then quantified by the analytical method as TKN. This method is unsuitable for samples containing high levels
Digestion for TKN in water	EP318	Water	· ·	which converts organic nitrogen sources to Ammonia, which is then quantified by the analytical method as TKN. This method is unsuitable for samples containing high levels of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be
ŭ	EP318 ALS Environmental - Edmonton		(mod)	which converts organic nitrogen sources to Ammonia, which is then quantified by the analytical method as TKN. This method is unsuitable for samples containing high levels of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low.
Preparation for Dissolved Organic Carbon for	EP318 ALS Environmental -	Water	· ·	which converts organic nitrogen sources to Ammonia, which is then quantified by the analytical method as TKN. This method is unsuitable for samples containing high levels of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be
ŭ	EP318 ALS Environmental - Edmonton EP358		(mod)	which converts organic nitrogen sources to Ammonia, which is then quantified by the analytical method as TKN. This method is unsuitable for samples containing high levels of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low.
Preparation for Dissolved Organic Carbon for	EP318 ALS Environmental - Edmonton		(mod)	which converts organic nitrogen sources to Ammonia, which is then quantified by the analytical method as TKN. This method is unsuitable for samples containing high levels of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low.
Preparation for Dissolved Organic Carbon for Combustion	EP318 ALS Environmental - Edmonton EP358 ALS Environmental -		(mod)	which converts organic nitrogen sources to Ammonia, which is then quantified by the analytical method as TKN. This method is unsuitable for samples containing high levels of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low.
Preparation for Dissolved Organic Carbon for	EP318 ALS Environmental - Edmonton EP358 ALS Environmental - Edmonton	Water	(mod) APHA 5310 B (mod)	which converts organic nitrogen sources to Ammonia, which is then quantified by the analytical method as TKN. This method is unsuitable for samples containing high levels of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low. Preparation for Dissolved Organic Carbon
Preparation for Dissolved Organic Carbon for Combustion	EP318 ALS Environmental - Edmonton EP358 ALS Environmental - Edmonton	Water	(mod) APHA 5310 B (mod)	which converts organic nitrogen sources to Ammonia, which is then quantified by the analytical method as TKN. This method is unsuitable for samples containing high levels of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low. Preparation for Dissolved Organic Carbon
Preparation for Dissolved Organic Carbon for Combustion	EP318 ALS Environmental - Edmonton EP358 ALS Environmental - Edmonton EP372	Water	(mod) APHA 5310 B (mod)	which converts organic nitrogen sources to Ammonia, which is then quantified by the analytical method as TKN. This method is unsuitable for samples containing high levels of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low. Preparation for Dissolved Organic Carbon
Preparation for Dissolved Organic Carbon for Combustion	EP318 ALS Environmental - Edmonton EP358 ALS Environmental - Edmonton EP372 ALS Environmental -	Water	(mod) APHA 5310 B (mod)	which converts organic nitrogen sources to Ammonia, which is then quantified by the analytical method as TKN. This method is unsuitable for samples containing high levels of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low. Preparation for Dissolved Organic Carbon
Preparation for Dissolved Organic Carbon for Combustion Digestion for Total Phosphorus in water	EP318 ALS Environmental - Edmonton EP358 ALS Environmental - Edmonton EP372 ALS Environmental - Winnipeg	Water	(mod) APHA 5310 B (mod) APHA 4500-P E (mod).	which converts organic nitrogen sources to Ammonia, which is then quantified by the analytical method as TKN. This method is unsuitable for samples containing high levels of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low. Preparation for Dissolved Organic Carbon Samples are heated with a persulfate digestion reagent.
Preparation for Dissolved Organic Carbon for Combustion Digestion for Total Phosphorus in water	EP318 ALS Environmental - Edmonton EP358 ALS Environmental - Edmonton EP372 ALS Environmental - Winnipeg	Water	(mod) APHA 5310 B (mod) APHA 4500-P E (mod).	which converts organic nitrogen sources to Ammonia, which is then quantified by the analytical method as TKN. This method is unsuitable for samples containing high levels of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low. Preparation for Dissolved Organic Carbon Samples are heated with a persulfate digestion reagent. Samples are filtered through a 0.45 micron membrane filter and then heated with a

Page : 20 of 20

Work Order : EO2308479 Amendment 1

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Metals Water Filtration	EP421	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
	ALS Environmental -			
VOCs Preparation for Headspace Analysis	EP581	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler. An aliquot of the headspace is then injected into the
	ALS Environmental - Edmonton			GC/MS-FID system.
PHCs and PAHs Hexane Extraction	EP601	Water	EPA 3511 (mod)	Petroleum Hydrocarbons (PHCs) and Polycyclic Aromatic Hydrocarbons (PAHs) are extracted using a hexane liquid-liquid extraction.
	ALS Environmental - Edmonton			
Phenolics Extraction	EP651	Water	EPA 3511 (mod)	Phenolics are extracted from acidic aqueous sample using DCM liquid-liquid extraction.
	ALS Environmental - Waterloo			
Pesticides, PCB, and Neutral Extractable Chlorinated Hydrocarbons Extraction	EP660	Water	EPA 3511 (mod)	Samples are extracted from aqueous sample using an organic solvent liquid-liquid extraction.
Cilionilated Hydrocarbons Extraction	ALS Environmental - Waterloo			GARIAGROTI.

ALS Canada Ltd.

QUALITY CONTROL REPORT

Work Order : EO2308479

Amendment : 1

Client : Clean Harbors Environmental Services, Inc. Laboratory : ALS Environmental - Edmonton

Contact : Todd Webb Account Manager : Megha Walia

Address : PO Box 390, 50114 Range Road 173 Address : 9450 - 17 Avenue NW

Edmonton, Alberta Canada T6N 1M9

Laboratory Department

: 1 of 17

Telephone : teleph

PO : 236266 Date Analysis Commenced : 20-Sep-2023

C-O-C number :---- Issue Date :19-Oct-2023 13:12 Sampler :TW 700 003 2542

780 663 2513 Site : Table 4.3E

Quote number : EO22-CHES100-008

No. of samples received : 3

No. of samples analysed : 3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

Position

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Ryley AB Canada T0B4A0

Signatories

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Alex Drake	Lab Analyst	Edmonton Inorganics, Edmonton, Alberta
Alex Drake	Lab Analyst	Edmonton Metals, Edmonton, Alberta
Amanda Powell	Client Service Manager	USA - Kelso Internal Subcontracting, Kelso, Washington DC (District of Columbia)
Amaninder Dhillon	Team Lead - Semi-Volatile Instrumentation	Waterloo Organics, Waterloo, Ontario
Brooke Miller	Laboratory Analyst	Edmonton Inorganics, Edmonton, Alberta
Dan Nguyen	Team Leader - Inorganics	Edmonton Metals, Edmonton, Alberta
Daniel Nguyen	Lab Assistant	Edmonton Metals, Edmonton, Alberta
Fahad Husain	Analyst	Edmonton Inorganics, Edmonton, Alberta
Garrett Nodin	Lab Analyst	Edmonton Inorganics, Edmonton, Alberta
Greg Pokocky	Manager - Inorganics	Waterloo Inorganics, Waterloo, Ontario
Jing Liu	Lab Assistant	Edmonton Inorganics, Edmonton, Alberta
Jocelyn Kennedy	Department Manager - Semi-Volatile Organics	Waterloo Organics, Waterloo, Ontario
Kari Mulroy	Lab Supervisor - Environmental	Edmonton Organics, Edmonton, Alberta
Lee McTavish		Winnipeg Inorganics, Winnipeg, Manitoba

Nik Perkio Ping Yeung Saron Gebremariam Yan Zhang Inorganics Analyst
Team Leader - Inorganics
Lab Assistant
Lab Analyst

Waterloo Inorganics, Waterloo, Ontario Edmonton Inorganics, Edmonton, Alberta Edmonton Inorganics, Edmonton, Alberta Edmonton Organics, Edmonton, Alberta Page : 3 of 17

Work Order : EO2308479 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : 2023 Table 4.3E Annual Pond chemistry

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page : 4 of 17

Work Order: EO2308479 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : 2023 Table 4.3E Annual Pond chemistry

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier	
Physical Tests (QC	Lot: 1143359)											
EO2308398-001	Anonymous	Solids, total suspended [TSS]		E160	3.0	mg/L	25.8	25.4	0.4	Diff <2x LOR		
Physical Tests (QC	Lot: 1143526)											
EO2308479-001	Pond B	pH		E108	0.10	pH units	8.73	8.73	0.00%	3%		
Physical Tests (QC	Lot: 1143527)											
EO2308479-001	Pond B	Conductivity		E100	1.0	μS/cm	874	860	1.61%	10%		
Physical Tests (QC	Lot: 1143528)											
EO2308479-001	Pond B	Alkalinity, total (as CaCO3)		E290	1.0	mg/L	163	157	3.62%	20%		
Anions and Nutrient	s (QC Lot: 1143331)											
EO2308461-001	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	10.0	mg/L	493	482	2.23%	20%		
Anions and Nutrient	s (QC Lot: 1143724)											
EO2308481-001	Anonymous	Fluoride	16984-48-8	E235.F	0.020	mg/L	0.158	0.158	0	Diff <2x LOR		
Anions and Nutrient	s (QC Lot: 1143725)											
EO2308481-001	Anonymous	Nitrate (as N)	14797-55-8	E235.NO3	0.020	mg/L	0.698	0.690	1.17%	20%		
Anions and Nutrient	s (QC Lot: 1143726)											
EO2308481-001	Anonymous	Nitrite (as N)	14797-65-0	E235.NO2	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR		
Anions and Nutrient	s (QC Lot: 1143727)											
EO2308481-001	Anonymous	Chloride	16887-00-6	E235.CI	0.50	mg/L	4.71	4.62	0.10	Diff <2x LOR		
Anions and Nutrient	s (QC Lot: 1143728)											
EO2308481-001	Anonymous	Sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	377	371	1.48%	20%		
Anions and Nutrient	s (QC Lot: 1143947)											
EO2308487-001	Anonymous	Ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.166	0.170	2.33%	20%		
Anions and Nutrient	s (QC Lot: 1152267)											
WP2324034-001	Anonymous	Phosphorus, total dissolved	7723-14-0	E375-H	0.020	mg/L	0.024	0.024	0.0003	Diff <2x LOR		
Anions and Nutrient	s (QC Lot: 1152274)											
WP2324027-002	Anonymous	Phosphorus, total	7723-14-0	E372	0.040	mg/L	1.29	1.30	0.543%	20%		
Cyanides (QC Lot:	146403)											
EO2308479-001	Pond B	Cyanide, weak acid dissociable		E336	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR		
Organic / Inorg <u>anic</u> :	Carbon (QC Lot: 1144	576)										
EO2308479-001	Pond B	Carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	12.0	12.8	6.50%	20%		
Total Metals (QC Lo	t: 11/3228)						<u>I</u>	I	1			

Page : 5 of 17

Work Order : EO2308479 Amendment 1

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Total Metals (QC Lo	ot: 1143228) - continu	ued									
EO2308478-001	Anonymous	Mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
Total Metals (QC Lo	ot: 1143469)										
EO2308461-001	Anonymous	Chromium, total	7440-47-3	E420	0.00250	mg/L	0.0408	0.0424	3.89%	20%	
		Sodium, total	7440-23-5	E420	0.250	mg/L	1690	1750	3.78%	20%	
Dissolved Metals (C	QC Lot: 1143515)										
EO2308466-001	Anonymous	Aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.367	0.359	1.97%	20%	
		Antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00023	0.00016	0.00007	Diff <2x LOR	
		Arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00011	<0.00010	0.00001	Diff <2x LOR	
		Barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.395	0.386	2.19%	20%	
		Beryllium, dissolved	7440-41-7	E421	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		Bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		Boron, dissolved	7440-42-8	E421	0.010	mg/L	0.089	0.087	0.002	Diff <2x LOR	
		Cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	0.0000186	0.0000258	0.0000072	Diff <2x LOR	
		Calcium, dissolved	7440-70-2	E421	0.050	mg/L	6.10	6.15	0.850%	20%	
		Cesium, dissolved	7440-46-2	E421	0.000010	mg/L	0.000015	0.000013	0.000001	Diff <2x LOR	
		Chromium, dissolved	7440-47-3	E421	0.00050	mg/L	0.0183	0.0175	4.65%	20%	
		Cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	0.00034	0.00032	0.00001	Diff <2x LOR	
		Copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00362	0.00359	0.737%	20%	
		Iron, dissolved	7439-89-6	E421	0.010	mg/L	1.00	1.00	0.119%	20%	
		Lead, dissolved	7439-92-1	E421	0.000050	mg/L	0.000411	0.000415	0.000004	Diff <2x LOR	
		Lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0019	0.0020	0.00008	Diff <2x LOR	
		Magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	3.17	3.12	1.68%	20%	
		Manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.0257	0.0254	1.52%	20%	
		Molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00110	0.00105	4.80%	20%	
		Nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00842	0.00843	0.0828%	20%	
		Phosphorus, dissolved	7723-14-0	E421	0.050	mg/L	0.062	0.058	0.003	Diff <2x LOR	
		Potassium, dissolved	7440-09-7	E421	0.050	mg/L	1.07	1.05	1.60%	20%	
		Rubidium, dissolved	7440-17-7	E421	0.00020	mg/L	0.00066	0.00065	0.000009	Diff <2x LOR	
		Selenium, dissolved	7782-49-2	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		Silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.93	3.01	2.73%	20%	
		Silver, dissolved	7440-22-4	E421	0.000010	mg/L	0.000031	0.000029	0.000002	Diff <2x LOR	
		Sodium, dissolved	7440-23-5	E421	0.050	mg/L	7.37	7.34	0.392%	20%	
		Strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.0132	0.0130	1.65%	20%	
		Sulfur, dissolved	7704-34-9	E421	0.50	mg/L	3.13	3.09	0.04	Diff <2x LOR	

Page : 6 of 17

Work Order: EO2308479 Amendment 1

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (C	QC Lot: 1143515) - con	tinued									
EO2308466-001	Anonymous	Tellurium, dissolved	13494-80-9	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		Thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		Thorium, dissolved	7440-29-1	E421	0.00010	mg/L	0.00013	<0.00010	0.00003	Diff <2x LOR	
		Tin, dissolved	7440-31-5	E421	0.00010	mg/L	0.00015	0.00015	0.000002	Diff <2x LOR	
		Titanium, dissolved	7440-32-6	E421	0.00030	mg/L	0.0520	0.0525	1.07%	20%	
		Tungsten, dissolved	7440-33-7	E421	0.00010	mg/L	0.00017	0.00016	0.00001	Diff <2x LOR	
		Uranium, dissolved	7440-61-1	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		Vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	0.00422	0.00423	0.000009	Diff <2x LOR	
		Zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.134	0.131	1.81%	20%	
		Zirconium, dissolved	7440-67-7	E421	0.00030	mg/L	0.00101	0.00096	0.00005	Diff <2x LOR	
Speciated Metals (C	QC Lot: 1144038)										
SK2304895-001	Anonymous	Chromium, hexavalent [Cr VI], dissolved	18540-29-9	E532A	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
Aggregate Organics	(QC Lot: 1143738)										
EO2308450-001	Anonymous	Chemical oxygen demand [COD]		E559-L	10	mg/L	24	27	2	Diff <2x LOR	
Aggregate Organics	(QC Lot: 1146134)										
CG2313037-001	Anonymous	Phenols, total (4AAP)		E562	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
Volatile Organic Co	mpounds (QC Lot: 114	3344)									
EO2308461-001	Anonymous	Benzene	71-43-2	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Ethylbenzene	100-41-4	E611A	0.50	μg/L	1.21	1.15	0.06	Diff <2x LOR	
		Toluene	108-88-3	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Xylene, m+p-	179601-23-1	E611A	0.40	μg/L	13.8	12.6	9.13%	30%	
		Xylene, o-	95-47-6	E611A	0.30	μg/L	6.70	6.84	2.08%	30%	
Hydrocarbons (QC	<u> </u>										
EO2308479-001	Pond B	F1 (C6-C10)		E581.F1	100	μg/L	<100	<100	0	Diff <2x LOR	

Page : 7 of 17

Work Order: EO2308479 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : 2023 Table 4.3E Annual Pond chemistry

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
hysical Tests (QCLot: 1143359)					
Solids, total suspended [TSS]	E160	3	mg/L	<3.0	
hysical Tests (QCLot: 1143527)					
Conductivity	E100	1	μS/cm	<1.0	
hysical Tests (QCLot: 1143528)					
Alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
nions and Nutrients (QCLot: 1143331					
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	<0.050	
nions and Nutrients (QCLot: 1143724					
Fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
nions and Nutrients (QCLot: 1143725					
Nitrate (as N)	14797-55-8 E235.NO3	0.02	mg/L	<0.020	
nions and Nutrients (QCLot: 1143726					
Nitrite (as N)	14797-65-0 E235.NO2	0.01	mg/L	<0.010	
nions and Nutrients (QCLot: 1143727					
Chloride	16887-00-6 E235.CI	0.5	mg/L	<0.50	
nions and Nutrients (QCLot: 1143728					
Sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
nions and Nutrients (QCLot: 1143947					
Ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
nions and Nutrients (QCLot: 1152267					
Phosphorus, total dissolved	7723-14-0 E375-H	0.02	mg/L	<0.020	
nions and Nutrients (QCLot: 1152274					
Phosphorus, total	7723-14-0 E372	0.02	mg/L	<0.020	
yanides (QCLot: 1146403)					
Cyanide, weak acid dissociable	E336	0.002	mg/L	<0.0020	
rganic / Inorganic Carbon (QCLot: 11					
Carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	<0.50	
otal Metals (QCLot: 1143228)					
Mercury, total	7439-97-6 E508	0.000005	mg/L	<0.000050	
otal Metals (QCLot: 1143469)					
Chromium, total	7440-47-3 E420	0.0005	mg/L	<0.00050	
Sodium, total	7440-23-5 E420	0.05	mg/L	<0.050	

Page : 8 of 17

Work Order: EO2308479 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : 2023 Table 4.3E Annual Pond chemistry

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 1143515)					
Aluminum, dissolved	7429-90-5 E421	0.001	mg/L	<0.0010	
Antimony, dissolved	7440-36-0 E421	0.0001	mg/L	<0.00010	
Arsenic, dissolved	7440-38-2 E421	0.0001	mg/L	<0.00010	
Barium, dissolved	7440-39-3 E421	0.0001	mg/L	<0.00010	
Beryllium, dissolved	7440-41-7 E421	0.00002	mg/L	<0.000020	
Bismuth, dissolved	7440-69-9 E421	0.00005	mg/L	<0.000050	
Boron, dissolved	7440-42-8 E421	0.01	mg/L	<0.010	
Cadmium, dissolved	7440-43-9 E421	0.000005	mg/L	<0.000050	
Calcium, dissolved	7440-70-2 E421	0.05	mg/L	<0.050	
Cesium, dissolved	7440-46-2 E421	0.00001	mg/L	<0.000010	
Chromium, dissolved	7440-47-3 E421	0.0005	mg/L	<0.00050	
Cobalt, dissolved	7440-48-4 E421	0.0001	mg/L	<0.00010	
Copper, dissolved	7440-50-8 E421	0.0002	mg/L	<0.00020	
Iron, dissolved	7439-89-6 E421	0.01	mg/L	<0.010	
Lead, dissolved	7439-92-1 E421	0.00005	mg/L	<0.000050	
Lithium, dissolved	7439-93-2 E421	0.001	mg/L	<0.0010	
Magnesium, dissolved	7439-95-4 E421	0.005	mg/L	<0.0050	
Manganese, dissolved	7439-96-5 E421	0.0001	mg/L	<0.00010	
Molybdenum, dissolved	7439-98-7 E421	0.00005	mg/L	<0.000050	
Nickel, dissolved	7440-02-0 E421	0.0005	mg/L	<0.00050	
Phosphorus, dissolved	7723-14-0 E421	0.05	mg/L	<0.050	
Potassium, dissolved	7440-09-7 E421	0.05	mg/L	<0.050	
Rubidium, dissolved	7440-17-7 E421	0.0002	mg/L	<0.00020	
Selenium, dissolved	7782-49-2 E421	0.00005	mg/L	<0.000050	
Silicon, dissolved	7440-21-3 E421	0.05	mg/L	<0.050	
Silver, dissolved	7440-22-4 E421	0.00001	mg/L	<0.000010	
Sodium, dissolved	7440-23-5 E421	0.05	mg/L	<0.050	
Strontium, dissolved	7440-24-6 E421	0.0002	mg/L	<0.00020	
Sulfur, dissolved	7704-34-9 E421	0.5	mg/L	<0.50	
Tellurium, dissolved	13494-80-9 E421	0.0002	mg/L	<0.00020	
Thallium, dissolved	7440-28-0 E421	0.00001	mg/L	<0.000010	
Thorium, dissolved	7440-29-1 E421	0.0001	mg/L	<0.00010	
Tin, dissolved	7440-31-5 E421	0.0001	mg/L	<0.00010	
Titanium, dissolved	7440-32-6 E421	0.0003	mg/L	<0.00030	
Tungsten, dissolved	7440-33-7 E421	0.0001	mg/L	<0.00010	

Page : 9 of 17

Work Order : EO2308479 Amendment 1

Client : Clean Harbors Environmental Services, Inc.
Project : 2023 Table 4.3E Annual Pond chemistry

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 1143515)	- continued					
Uranium, dissolved	7440-61-1	E421	0.00001	mg/L	<0.000010	
Vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	<0.00050	
Zinc, dissolved	7440-66-6	E421	0.001	mg/L	<0.0010	
Zirconium, dissolved	7440-67-7	E421	0.0002	mg/L	<0.00020	
Speciated Metals (QCLot: 1144038)						
Chromium, hexavalent [Cr VI], dissolved	18540-29-9	E532A	0.0005	mg/L	<0.00050	
Aggregate Organics (QCLot: 114373	8)					
Chemical oxygen demand [COD]		E559-L	10	mg/L	<10	
Aggregate Organics (QCLot: 114613	4)					
Phenols, total (4AAP)		E562	0.001	mg/L	<0.0010	
Volatile Organic Compounds (QCLo	t: 1143344)					
Benzene	71-43-2	E611A	0.5	μg/L	<0.50	
Ethylbenzene	100-41-4	E611A	0.5	μg/L	<0.50	
Toluene	108-88-3	E611A	0.5	μg/L	<0.50	
Xylene, m+p-	179601-23-1	E611A	0.4	μg/L	<0.40	
Xylene, o-	95-47-6	E611A	0.3	μg/L	<0.30	
lydrocarbons (QCLot: 1143263)						
F2 (C10-C16)		E601	100	μg/L	<100	
Hydrocarbons (QCLot: 1143345)						
F1 (C6-C10)		E581.F1	100	μg/L	<100	
Chlorinated Phenolics (QCLot: 1152	973)					
Chlorophenol, 2-	95-57-8	E651C	0.3	μg/L	<0.30	
Dichlorophenol, 2,4-	120-83-2	E651C	0.2	μg/L	<0.20	
Dichlorophenol, 2,6-	87-65-0	E651C	0.2	μg/L	<0.20	
Methylphenol, 4-chloro-3-	59-50-7	E651C	0.5	μg/L	<0.50	
Pentachlorophenol [PCP]	87-86-5	E651C	0.5	μg/L	<0.50	
Tetrachlorophenol, 2,3,4,5-	4901-51-3	E651C	0.5	μg/L	<0.50	
Tetrachlorophenol, 2,3,4,6-	58-90-2	E651C	0.5	μg/L	<0.50	
Tetrachlorophenol, 2,3,5,6-	935-95-5	E651C	0.5	μg/L	<0.50	
Trichlorophenol, 2,3,4-	15950-66-0	E651C	0.5	μg/L	<0.50	
Trichlorophenol, 2,3,5-	933-78-8	E651C	0.5	μg/L	<0.50	
Trichlorophenol, 2,4,5-	95-95-4	E651C	0.5	μg/L	<0.50	
Trichlorophenol, 2,4,6-	88-06-2	E651C	0.5	μg/L	<0.50	
Non-Chlorinated Phenolics (QCLot:	1152973)					
Dimethylphenol, 2,4-	105-67-9	E651C	0.5	μg/L	<0.50	

Page : 10 of 17

Work Order: EO2308479 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : 2023 Table 4.3E Annual Pond chemistry

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Ion-Chlorinated Phenolics (QCLot: 11	52973) - continued					
Dinitrophenol, 2,4-	51-28-5	E651C	1	μg/L	<1.0	
Methylphenol, 2-	95-48-7	E651C	0.5	μg/L	<0.50	
Methylphenol, 3+4-		E651C	0.5	μg/L	<0.50	
Nitrophenol, 2-	88-75-5	E651C	0.5	μg/L	<0.50	
Nitrophenol, 4-	100-02-7	E651C	0.5	μg/L	<0.50	
Phenol	108-95-2	E651C	0.5	μg/L	<0.50	
Phenol, 2-methyl-4,6-dinitro- [DNOC]	534-52-1	E651C	2	μg/L	<2.0	
olychlorinated Biphenyls (QCLot: 11	51415)					
Aroclor 1016	12674-11-2	E687	0.02	μg/L	<0.020	
Aroclor 1221	11104-28-2	E687	0.02	μg/L	<0.020	
Aroclor 1232	11141-16-5	E687	0.02	μg/L	<0.020	
Aroclor 1242	53469-21-9	E687	0.02	μg/L	<0.020	
Aroclor 1248	12672-29-6	E687	0.02	μg/L	<0.020	
Aroclor 1254	11097-69-1	E687	0.02	μg/L	<0.020	
Aroclor 1260	11096-82-5	E687	0.02	μg/L	<0.020	
Aroclor 1262	37324-23-5	E687	0.02	μg/L	<0.020	
Aroclor 1268	11100-14-4	E687	0.02	μg/L	<0.020	

Page : 11 of 17

Work Order: EO2308479 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : 2023 Table 4.3E Annual Pond chemistry

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water						Laboratory Co	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 1143359)									
Solids, total suspended [TSS]		E160	3	mg/L	150 mg/L	100	85.0	115	
Physical Tests (QCLot: 1143526)									
рН		E108		pH units	6 pH units	100	97.0	103	
Physical Tests (QCLot: 1143527)									
Conductivity		E100	1	μS/cm	1412 μS/cm	100	90.0	110	
Physical Tests (QCLot: 1143528)									
Alkalinity, total (as CaCO3)		E290	1	mg/L	500 mg/L	106	85.0	115	
Anions and Nutrients (QCLot: 1143331)									
Kjeldahl nitrogen, total [TKN]		E318	0.05	mg/L	4 mg/L	104	75.0	125	
Anions and Nutrients (QCLot: 1143724)									
Fluoride	16984-48-8	E235.F	0.02	mg/L	1 mg/L	95.2	90.0	110	
Anions and Nutrients (QCLot: 1143725)									
Nitrate (as N)	14797-55-8	E235.NO3	0.02	mg/L	2.5 mg/L	101	90.0	110	
Anions and Nutrients (QCLot: 1143726)									
Nitrite (as N)	14797-65-0	E235.NO2	0.01	mg/L	0.5 mg/L	99.4	90.0	110	
Anions and Nutrients (QCLot: 1143727)								1	
Chloride	16887-00-6	E235.Cl	0.5	mg/L	100 mg/L	100	90.0	110	
Anions and Nutrients (QCLot: 1143728)	4 4000 70 0	5005.004							
Sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	96.7	90.0	110	
Anions and Nutrients (QCLot: 1143947)	7004 44 7	5000	0.005						
Ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	107	85.0	115	
Anions and Nutrients (QCLot: 1152267)	7700 44 0								
Phosphorus, total dissolved	7723-14-0	E3/5-H	0.02	mg/L	0.5 mg/L	96.0	80.0	120	
Anions and Nutrients (QCLot: 1152274)	7700 44 0	5000							
Phosphorus, total	7723-14-0	E3/2	0.02	mg/L	0.5 mg/L	94.4	80.0	120	
Cyanides (QCLot: 1146403) Cyanide, weak acid dissociable		E336	0.002	mg/l	0.425//	100	80.0	120	
Cyanide, weak acid dissociable		LUUU	0.002	mg/L	0.125 mg/L	100	ou.u	120	
Organic / Inorganic Carbon (QCLot: 1144576) Carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	8.57 mg/L	107	80.0	120	
Carbon, dissolved organic [DOC]		L000-L	0.5	mg/L	0.57 Hg/L	107	00.0	120	

Page : 12 of 17

Work Order : EO2308479 Amendment 1

Sub-Matrix: Water		Laboratory Control Sample (LCS) Report							
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifie
Total Metals (QCLot: 1143228)									
Mercury, total	7439-97-6	E508	0.000005	mg/L	0.0001 mg/L	102	80.0	120	
Total Metals (QCLot: 1143469)									
Chromium, total	7440-47-3	E420	0.0005	mg/L	0.25 mg/L	96.0	80.0	120	
Sodium, total	7440-23-5	E420	0.05	mg/L	50 mg/L	101	80.0	120	
Dissolved Metals (QCLot: 1143515)									
Aluminum, dissolved	7429-90-5	E421	0.001	mg/L	2 mg/L	101	80.0	120	
Antimony, dissolved	7440-36-0	E421	0.0001	mg/L	1 mg/L	97.9	80.0	120	
Arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	1 mg/L	106	80.0	120	
Barium, dissolved	7440-39-3	E421	0.0001	mg/L	0.25 mg/L	107	0.08	120	
Beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.1 mg/L	99.9	80.0	120	
Bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	1 mg/L	98.2	80.0	120	
Boron, dissolved	7440-42-8	E421	0.01	mg/L	1 mg/L	98.6	80.0	120	
Cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.1 mg/L	106	80.0	120	
Calcium, dissolved	7440-70-2	E421	0.05	mg/L	50 mg/L	104	80.0	120	
Cesium, dissolved	7440-46-2	E421	0.00001	mg/L	0.05 mg/L	100.0	80.0	120	
Chromium, dissolved	7440-47-3	E421	0.0005	mg/L	0.25 mg/L	103	80.0	120	
Cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.25 mg/L	104	80.0	120	
Copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.25 mg/L	103	80.0	120	
ron, dissolved	7439-89-6	E421	0.01	mg/L	1 mg/L	103	80.0	120	
_ead, dissolved	7439-92-1	E421	0.00005	mg/L	0.5 mg/L	98.8	80.0	120	
Lithium, dissolved	7439-93-2	E421	0.001	mg/L	0.25 mg/L	101	80.0	120	
Magnesium, dissolved	7439-95-4	E421	0.005	mg/L	50 mg/L	104	80.0	120	
Manganese, dissolved	7439-96-5	E421	0.0001	mg/L	0.25 mg/L	107	80.0	120	
Molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.25 mg/L	98.2	80.0	120	
Nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.5 mg/L	101	80.0	120	
Phosphorus, dissolved	7723-14-0	E421	0.05	mg/L	10 mg/L	112	80.0	120	
Potassium, dissolved	7440-09-7	E421	0.05	mg/L	50 mg/L	103	80.0	120	
Rubidium, dissolved	7440-17-7	E421	0.0002	mg/L	0.1 mg/L	106	80.0	120	
Selenium, dissolved	7782-49-2	E421	0.00005	mg/L	1 mg/L	102	80.0	120	
Silicon, dissolved	7440-21-3	E421	0.05	mg/L	10 mg/L	110	80.0	120	
Silver, dissolved	7440-22-4	E421	0.00001	mg/L	0.1 mg/L	97.4	80.0	120	
Sodium, dissolved	7440-23-5	E421	0.05	mg/L	50 mg/L	106	80.0	120	
Strontium, dissolved	7440-24-6	E421	0.0002	mg/L	0.25 mg/L	98.5	80.0	120	
Sulfur, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	110	80.0	120	

Page : 13 of 17

Work Order : EO2308479 Amendment 1

Sub-Matrix: Water	-Matrix: Water					Laboratory Co	ontrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifie
Dissolved Metals (QCLot: 1143515) - co	ntinued								
Tellurium, dissolved	13494-80-9 I	E421	0.0002	mg/L	0.1 mg/L	96.5	80.0	120	
Thallium, dissolved	7440-28-0 I	E421	0.00001	mg/L	1 mg/L	99.0	80.0	120	
Thorium, dissolved	7440-29-1 I	E421	0.0001	mg/L	0.1 mg/L	90.2	80.0	120	
Tin, dissolved	7440-31-5 I	E421	0.0001	mg/L	0.5 mg/L	102	80.0	120	
Titanium, dissolved	7440-32-6 I	E421	0.0003	mg/L	0.25 mg/L	107	80.0	120	
Tungsten, dissolved	7440-33-7 I	E421	0.0001	mg/L	0.1 mg/L	101	80.0	120	
Uranium, dissolved	7440-61-1 I	E421	0.00001	mg/L	0.005 mg/L	96.2	80.0	120	
Vanadium, dissolved	7440-62-2 I	E421	0.0005	mg/L	0.5 mg/L	104	80.0	120	
Zinc, dissolved	7440-66-6 I	E421	0.001	mg/L	0.5 mg/L	103	80.0	120	
Zirconium, dissolved	7440-67-7		0.0002	mg/L	0.1 mg/L	98.5	80.0	120	
				J.	0.1 mg/2	00.0		-	
Speciated Matala (OCI et: 4444939)									
Speciated Metals (QCLot: 1144038) Chromium, hexavalent [Cr VI], dissolved	18540-29-9	E532A	0.0005	mg/L	0.25 mg/L	105	80.0	120	
omonium, noxavaioni [or vi], alessivea	100.10 20 0		0.000	9/2	0.20 mg/L	100	00.0	.20	
A									
Aggregate Organics (QCLot: 1143738) Chemical oxygen demand [COD]		E559-L	10	mg/L	100 mg/L	102	85.0	115	
			10	mg/L	100 Hig/L	102	00.0	110	
Aggregate Organics (QCLot: 1146134)		E562	0.001	ma er /1	0.00 #	04.0	85.0	115	
Phenols, total (4AAP)		=302	0.001	mg/L	0.02 mg/L	94.6	65.0	115	
Volatile Organic Compounds (QCLot: 11	43344) 71-43-2		0.5	/1	400 #	00.0	70.0	130	
Benzene				μg/L	100 μg/L	83.9			
Ethylbenzene	100-41-4		0.5	μg/L	100 μg/L	82.1	70.0	130	
Toluene	108-88-3		0.5	μg/L	100 μg/L	83.0	70.0	130	
Xylene, m+p-		E611A	0.4	μg/L	200 μg/L	92.2	70.0	130	
Xylene, o-	95-47-6	E611A	0.3	μg/L	100 μg/L	98.4	70.0	130	
Hydrocarbons (QCLot: 1143263)									
F2 (C10-C16)		E601	100	μg/L	3850 μg/L	106	70.0	130	
Hydrocarbons (QCLot: 1143345)									
F1 (C6-C10)		E581.F1	100	μg/L	2750 μg/L	104	70.0	130	
Chlorinated Phenolics (QCLot: 1152973)									
Chlorophenol, 2-	95-57-8	E651C	0.3	μg/L	2.4 μg/L	85.4	50.0	130	
Dichlorophenol, 2,4-	120-83-2	E651C	0.2	μg/L	2.4 µg/L	88.2	50.0	130	
Dichlorophenol, 2,6-	87-65-0 I	E651C	0.2	μg/L	2.4 μg/L	86.9	50.0	130	
D. 101.1101.101.101.101.101.101.101.101.1									

Page : 14 of 17

Work Order: EO2308479 Amendment 1

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Chlorinated Phenolics (QCLot: 1152973) - continued									
Pentachlorophenol [PCP]	87-86-5	E651C	0.5	μg/L	2.4 μg/L	108	40.0	140		
Tetrachlorophenol, 2,3,4,5-	4901-51-3	E651C	0.5	μg/L	2.4 μg/L	102	60.0	130		
Tetrachlorophenol, 2,3,4,6-	58-90-2	E651C	0.5	μg/L	2.4 μg/L	123	60.0	130		
Tetrachlorophenol, 2,3,5,6-	935-95-5	E651C	0.5	μg/L	2.4 μg/L	99.0	60.0	130		
Trichlorophenol, 2,3,4-	15950-66-0	E651C	0.5	μg/L	2.4 μg/L	90.6	50.0	130		
Trichlorophenol, 2,3,5-	933-78-8	E651C	0.5	μg/L	2.4 μg/L	90.3	50.0	130		
Trichlorophenol, 2,4,5-	95-95-4	E651C	0.5	μg/L	2.4 μg/L	95.9	50.0	130		
Trichlorophenol, 2,4,6-	88-06-2	E651C	0.5	μg/L	2.4 μg/L	87.0	50.0	130		
Non-Chlorinated Phenolics (QCLot: 115	(2973)									
Dimethylphenol, 2,4-	105-67-9	E651C	0.5	μg/L	2.4 μg/L	89.6	50.0	130		
Dinitrophenol, 2,4-	51-28-5	E651C	1	μg/L	2.4 µg/L	104	40.0	130		
Methylphenol, 2-	95-48-7	E651C	0.5	μg/L	2.4 µg/L	84.3	30.0	130		
Methylphenol, 3+4-		E651C	0.5	μg/L	4.8 μg/L	83.7	50.0	130		
Nitrophenol, 2-	88-75-5	E651C	0.5	μg/L	0.8 μg/L	86.0	40.0	140		
Nitrophenol, 4-	100-02-7	E651C	0.5	μg/L	2.4 µg/L	89.2	40.0	140		
Phenol	108-95-2	E651C	0.5	μg/L	2.4 µg/L	107	30.0	130		
Phenol, 2-methyl-4,6-dinitro- [DNOC]	534-52-1	E651C	2	μg/L	2.4 μg/L	128	40.0	140		
Polychlorinated Biphenyls (QCLot: 115	1415)									
Aroclor 1016	12674-11-2	E687	0.02	μg/L	1 μg/L	102	60.0	140		
Aroclor 1221	11104-28-2	E687	0.02	μg/L	1 μg/L	102	60.0	140		
Aroclor 1232	11141-16-5	E687	0.02	μg/L	1 μg/L	102	60.0	140		
Aroclor 1242	53469-21-9	E687	0.02	μg/L	1 μg/L	102	60.0	140		
Aroclor 1248	12672-29-6	E687	0.02	μg/L	1 μg/L	81.0	60.0	140		
Aroclor 1254	11097-69-1	E687	0.02	μg/L	1 μg/L	96.4	60.0	140		
Aroclor 1260	11096-82-5	E687	0.02	μg/L	1 μg/L	97.0	60.0	140		
Aroclor 1262	37324-23-5	E687	0.02	μg/L	1 μg/L	97.0	60.0	140		
Aroclor 1268	11100-14-4	E687	0.02	μg/L	1 μg/L	97.0	60.0	140		

Page : 15 of 17

Work Order: EO2308479 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : 2023 Table 4.3E Annual Pond chemistry

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

ub-Matrix: Water							Matrix Spik						
					·		Recovery (%)						
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie			
nions and Nutr	ients (QCLot: 1143331	1)											
EO2308461-002	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	ND mg/L	2.5 mg/L	ND	70.0	130				
nions and Nutr	ients (QCLot: 1143724	4)											
EO2308481-001	Anonymous	Fluoride	16984-48-8	E235.F	1.00 mg/L	1 mg/L	100	75.0	125				
nions and Nutr	ients (QCLot: 114372	5)											
EO2308481-001	Anonymous	Nitrate (as N)	14797-55-8	E235.NO3	2.39 mg/L	2.5 mg/L	95.7	75.0	125				
nions and Nutr	ients (QCLot: 1143726	6)											
EO2308481-001	Anonymous	Nitrite (as N)	14797-65-0	E235.NO2	0.478 mg/L	0.5 mg/L	95.6	75.0	125				
Anions and Nutr	ients (QCLot: 1143727	7)											
EO2308481-001	Anonymous	Chloride	16887-00-6	E235.CI	98.4 mg/L	100 mg/L	98.4	75.0	125				
Anions and Nutr	ients (QCLot: 1143728	8)											
EO2308481-001	Anonymous	Sulfate (as SO4)	14808-79-8	E235.SO4	ND mg/L	100 mg/L	ND	75.0	125				
Anions and Nutr	ients (QCLot: 1143947	7)											
EO2308487-001	Anonymous	Ammonia, total (as N)	7664-41-7	E298	ND mg/L	0.1 mg/L	ND	75.0	125				
nions and Nutr	ients (QCLot: 1152267	7)											
EO2308479-001	Pond B	Phosphorus, total dissolved	7723-14-0	E375-H	ND mg/L	0.25 mg/L	ND	70.0	130				
Anions and Nutr	ients (QCLot: 1152274	4)											
WP2324034-001	Anonymous	Phosphorus, total	7723-14-0	E372	0.241 mg/L	0.25 mg/L	96.4	70.0	130				
yanides (QCLc	ot: 1146403)												
EO2308479-001	Pond B	Cyanide, weak acid dissociable		E336	0.132 mg/L	0.125 mg/L	105	75.0	125				
Organic / Inorga	nic Carbon (QCLot: 11	144576)											
EO2308479-001	Pond B	Carbon, dissolved organic [DOC]		E358-L	ND mg/L	5 mg/L	ND	70.0	130				
otal Metals (QC	CLot: 1143228)												
EO2308479-001	Pond B	Mercury, total	7439-97-6	E508	0.0000736 mg/L	0.0001 mg/L	73.6	70.0	130				
otal Metals (QC	CLot: 1143469)												
EO2308461-002	Anonymous	Chromium, total	7440-47-3	E420	0.0448 mg/L	0.04 mg/L	112	70.0	130				
		Sodium, total	7440-23-5	E420	ND mg/L	2 mg/L	ND	70.0	130				

Page : 16 of 17

Work Order : EO2308479 Amendment 1

Sub-Matrix: Water	b-Matrix: Water					Matrix Spike (MS) Report					
					Sp	ike	Recovery (%)	Recovery	Limits (%)		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier	
Dissolved Metals	(QCLot: 1143515)	- continued									
EO2308478-001	Anonymous	Aluminum, dissolved	7429-90-5	E421	0.184 mg/L	0.2 mg/L	91.9	70.0	130		
		Antimony, dissolved	7440-36-0	E421	0.0192 mg/L	0.02 mg/L	95.8	70.0	130		
		Arsenic, dissolved	7440-38-2	E421	0.0209 mg/L	0.02 mg/L	104	70.0	130		
		Barium, dissolved	7440-39-3	E421	ND mg/L	0.02 mg/L	ND	70.0	130		
		Beryllium, dissolved	7440-41-7	E421	0.0398 mg/L	0.04 mg/L	99.6	70.0	130		
		Bismuth, dissolved	7440-69-9	E421	0.00764 mg/L	0.01 mg/L	76.4	70.0	130		
		Boron, dissolved	7440-42-8	E421	0.085 mg/L	0.1 mg/L	84.9	70.0	130		
		Cadmium, dissolved	7440-43-9	E421	0.00378 mg/L	0.004 mg/L	94.6	70.0	130		
		Calcium, dissolved	7440-70-2	E421	ND mg/L	4 mg/L	ND	70.0	130		
		Cesium, dissolved	7440-46-2	E421	0.00948 mg/L	0.01 mg/L	94.8	70.0	130		
		Chromium, dissolved	7440-47-3	E421	0.0376 mg/L	0.04 mg/L	94.0	70.0	130		
		Cobalt, dissolved	7440-48-4	E421	0.0184 mg/L	0.02 mg/L	92.1	70.0	130		
		Copper, dissolved	7440-50-8	E421	0.0178 mg/L	0.02 mg/L	88.8	70.0	130		
		Iron, dissolved	7439-89-6	E421	1.84 mg/L	2 mg/L	92.1	70.0	130		
		Lead, dissolved	7439-92-1	E421	0.0176 mg/L	0.02 mg/L	88.1	70.0	130		
		Lithium, dissolved	7439-93-2	E421	0.102 mg/L	0.1 mg/L	102	70.0	130		
		Magnesium, dissolved	7439-95-4	E421	ND mg/L	1 mg/L	ND	70.0	130		
		Manganese, dissolved	7439-96-5	E421	ND mg/L	0.02 mg/L	ND	70.0	130		
		Molybdenum, dissolved	7439-98-7	E421	0.0185 mg/L	0.02 mg/L	92.5	70.0	130		
		Nickel, dissolved	7440-02-0	E421	0.0355 mg/L	0.04 mg/L	88.8	70.0	130		
		Phosphorus, dissolved	7723-14-0	E421	11.2 mg/L	10 mg/L	112	70.0	130		
		Potassium, dissolved	7440-09-7	E421	3.70 mg/L	4 mg/L	92.6	70.0	130		
		Rubidium, dissolved	7440-17-7	E421	0.0190 mg/L	0.02 mg/L	94.8	70.0	130		
		Selenium, dissolved	7782-49-2	E421	ND mg/L	0.04 mg/L	ND	70.0	130		
		Silicon, dissolved	7440-21-3	E421	9.56 mg/L	10 mg/L	95.6	70.0	130		
		Silver, dissolved	7440-22-4	E421	0.00348 mg/L	0.004 mg/L	86.9	70.0	130		
		Sodium, dissolved	7440-23-5	E421	ND mg/L	2 mg/L	ND	70.0	130		
		Strontium, dissolved	7440-24-6	E421	ND mg/L	0.02 mg/L	ND	70.0	130		
		Sulfur, dissolved	7704-34-9	E421	ND mg/L	20 mg/L	ND	70.0	130		
		Tellurium, dissolved	13494-80-9	E421	0.0391 mg/L	0.04 mg/L	97.8	70.0	130		
		Thallium, dissolved	7440-28-0	E421	0.00355 mg/L	0.004 mg/L	88.7	70.0	130		
		Thorium, dissolved	7440-29-1	E421	0.0198 mg/L	0.02 mg/L	98.9	70.0	130		
		Tin, dissolved	7440-31-5	E421	0.0195 mg/L	0.02 mg/L	97.4	70.0	130		
		Titanium, dissolved	7440-32-6	E421	0.0402 mg/L	0.04 mg/L	101	70.0	130		
	I	Tungsten, dissolved	7440-33-7	E421	0.0185 mg/L	0.02 mg/L	92.6	70.0	130	I	

Page : 17 of 17

Work Order: EO2308479 Amendment 1

Sub-Matrix: Water							Matrix Spil	ke (MS) Report		
					Spi	ike	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Dissolved Metals	(QCLot: 1143515) - co	ontinued								
EO2308478-001	Anonymous	Uranium, dissolved	7440-61-1	E421	ND mg/L	0.004 mg/L	ND	70.0	130	
		Vanadium, dissolved	7440-62-2	E421	0.0990 mg/L	0.1 mg/L	99.0	70.0	130	
		Zinc, dissolved	7440-66-6	E421	0.353 mg/L	0.4 mg/L	88.2	70.0	130	
		Zirconium, dissolved	7440-67-7	E421	0.0385 mg/L	0.04 mg/L	96.3	70.0	130	
Speciated Metals	(QCLot: 1144038)									
SK2304895-001	Anonymous	Chromium, hexavalent [Cr VI], dissolved	18540-29-9	E532A	0.0485 mg/L	0.05 mg/L	97.0	70.0	130	
Aggregate Organ	nics (QCLot: 1143738)									
EO2308461-001	Anonymous	Chemical oxygen demand [COD]		E559-L	ND mg/L	100 mg/L	ND	75.0	125	
Aggregate Organ	nics (QCLot: 1146134)									
CG2313037-001	Anonymous	Phenols, total (4AAP)		E562	0.0200 mg/L	0.02 mg/L	99.9	75.0	125	
Volatile Organic	Compounds (QCLot: 11	143344)								
EO2308461-002	Anonymous	Benzene	71-43-2	E611A	93.6 μg/L	100 μg/L	93.6	50.0	140	
		Ethylbenzene	100-41-4	E611A	83.8 µg/L	100 μg/L	83.8	50.0	140	
		Toluene	108-88-3	E611A	90.8 μg/L	100 μg/L	90.8	50.0	140	
		Xylene, m+p-	179601-23-1	E611A	184 μg/L	200 μg/L	92.0	50.0	140	
		Xylene, o-	95-47-6	E611A	101 μg/L	100 μg/L	101	50.0	140	

Service Request No:K2310695

Dana Brown ALS Environmental - Canada 9450-17 Ave. NW Edmonton, AB T6N 1M9

Laboratory Results for: EO2308479

Dear Dana.

Enclosed are the results of the sample(s) submitted to our laboratory September 22, 2023 For your reference, these analyses have been assigned our service request number **K2310695**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3260. You may also contact me via email at Luke.Rahn@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Luke Rahn

Project Manager

Narrative Documents

Client: ALS Environmental - Canada Service Request: K2310695

Project: EO2308479 Date Received: 09/22/2023

Sample Matrix: Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Three water samples were received for analysis at ALS Environmental on 09/22/2023. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

General Chemistry:

Method 1650C, 10/06/2023:The analysis of samples in this delivery group were initially performed past the recommended holding time. The laboratory erred in correctly tracking the sample for this testing. Efforts were made to analyze the sample as soon as the error was identified. The data was flagged to indicate the holding time violation.

Date 10/10/2023

Sample Receipt Information

Client: ALS Environmental - Canada Service Request: K2310695

Project: EO2308479

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	<u>DATE</u>	<u>TIME</u>
K2310695-001	EO2308479-001	9/19/2023	1030
K2310695-002	EO2308479-002	9/19/2023	1030
K2310695-003	EO2308479-003	9/19/2023	1030

V12310(25) 141826

Destination Lab: USA - Kelso

Address:

1317 South 13th Avenue Kelso DC United

States 98626

Clean Harbors Environmental Services, Inc.

Work Order Number: EO2308479

Original Receipt Date/Time

Instructions Received

19/09/2023 14:43

Relinquished By Date/Time

Return as Indicated: Results: ALSEDClientServices@alsglobal.com Invoice: ALSEDClientServices@alsglobal.com

Electronic Data: ALSEDClientServices@alsglobal.com

ALS Sample ID	Client ID	Matrix	Container Type	Test Codes	Method Description	Due Date	Sampling Date and Time	Remarks
EO2308479-001	Pond B	Water	Amber glass/Teflon lined cap	AOX	Adsorbable Organic Halides (AOX) by Adsortption and Coulometric Titration	11-10-2023	19/09/2023 10:30	
EO2308479-002	Pond C	Water	Amber glass/Teflon lined cap	AOX	Adsorbable Organic Halides (AOX) by Adsortption and Coulometric Titration	11-10-2023	19/09/2023 10:30	
EO2308479-003	Tipping Pad Pond	Water	Amber glass/Teflon lined cap	AOX	Adsorbable Organic Halides (AOX) by Adsortption and Coulometric Titration	11-10-2023	19/09/2023 10:30	

	**************************************	0	~~~
PM	7	<u> </u>	

ient	D COM	aga	177/77			_Serv	rice Request		<u> 1004 c</u>	<u>) </u>	.A	
eceived:			122/23		Vor		_Unloaded: _			Ву: <u>↓</u> ∠	•	
•	re received via?	USPS		JPS -	DE	<i>IL</i>	PDX	Couri		ıd Delive ,		
•	re received in: (cir	•	ooler Box		velope	4					VA.	
	ly seals on coolers? ere custody seals in				-		vnere? gned and dated			——— Y	N	
II present, w	cie custody seals il	mact:	1 10 1	i present	, were t	iley Si	giicu aiiu uaicu) N	
Plank	Samala Tama	IR Gun			Out of		PM Notifie	- 1	Tracking !	Namber	NΔ	Filed
remp Blank	Sample Temp	TAN.	Gooler #/COC ID / NA	<u> </u>	HOICHIE	WILL A	I Out or	enip -	1721 Q	18/00	<u> </u>	7 THEC
	7.0	LMO								1000	, July	4
				-								
		<u> </u>										
Was a Tempi	rature Blank prese	nt in cooler?	NA Y (N)	lfves no	state the	temn	erature in the a	opropriate	column above	p +		i
_	-		e sample bottle containe	• /		•				.		
•	-	-	cified temperature rang				210 m- MIO VOI		NA	(\mathbf{y})	N	
•		•	y as collected? If not, no		cooler:	# ahov	e and notify th	e PM	NA)	Y	N	
	ssue samples were		Frozen Partially Th		Thawe	_	c and nothly th	₩ X 142.	O	•	**	
•	-)	••						
-			bble Wrap Gel Packs	s Wet	Ice D	ry Ice	Sleeves			\		
	dy papers properly		· -						NA (Y	N	
_	les received in goo	-	•						NA	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	N	
	mple labels comple ple labels and tags		s, preservation, etc.)?						NA NA	\nearrow	N N	
			umes received for the te	sts indic	ated?				NA	Y	N	
	•		EN SOP) received at the			? Ind	icate in the tab	le below	NA	Y	(N))
3. Were VOA	vials received with	hout headspac	e? Indicate in the table	below.					(NA)	Y	N	
4. Was C12/R	tes negative?								NA	Y	N	
5. Were samp	les received within	the method s	pecified time limit? If n	ot, notat	e the er	ror bel	ow and notify	the PM	NA	Y	N	
6. Were 100m	nl sterile microbiole	ogy bottles fill	led exactly to the 100m	l mark?	Ŋ.	<u> </u>	Y N		Underfille	ed C	verfille	d
S	ample ID on Bot	tie	Sample	iD on	coc				identified t	oy:		
			Bottle Count	Head-				Volume				
	Sample ID		Bottle Type		Broke		Reagent	added	Numbe		nitials	<u>Time</u> 1130
	1111		250ML glass	1		X	14NO3	1.5nC	BEI-(do		VIM	1100
			<u> </u>					-	<u> </u>			
				-								
									1		1	
•								•	<u> </u>	I		

Page 7 of 23

Miscellaneous Forms

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
	https://deq.nc.gov/about/divisions/water-resources/water-resources-data/water-sciences-home-page/laboratory-certification-branch/non-field-lab-	
North Carolina DEQ	certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

ALS Group USA, Corp. dba ALS Environmental

Analyst Summary report

Client: ALS Environmental - Canada

Project: EO2308479/

Service Request: K2310695

Sample Name: EO2308479-001 **Lab Code:** K2310695-001

Sample Matrix: Water

Date Collected: 09/19/23

Date Received: 09/22/23

Analysis Method

1650C

Extracted/Digested By

Analyzed By

KABROWN

Sample Name: EO2308479-002 **Lab Code:** K2310695-002

Sample Matrix: Water

Date Collected: 09/19/23

Date Received: 09/22/23

Analysis Method

1650C

Extracted/Digested By

Analyzed By

KABROWN

Sample Name: EO2308479-003 **Lab Code:** K2310695-003

Sample Matrix: Water

Date Collected: 09/19/23

Date Received: 09/22/23

Analysis Method

1650C

Extracted/Digested By

Analyzed By

KABROWN

Sample Results

General Chemistry

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: ALS Environmental - Canada

Water

Project: EO2308479

Sample Matrix:

Service Request: K2310695

Date Collected: 09/19/23 10:30

Date Received: 09/22/23 10:20

Sample Name: Basis: NA EO2308479-001

Lab Code: K2310695-001

General Chemistry Parameters

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q	
Halides, Adsorbable Organic (AOX)	1650C	ND U	mg/L	0.020	1	10/06/23 11:59	*	

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: ALS Environmental - Canada

Water

Project: EO2308479

Service Request: K2310695

Date Collected: 09/19/23 10:30

Date Received: 09/22/23 10:20

Sample Name: EO2308479-002

Sample Matrix:

Lab Code: K2310695-002

Basis: NA

General Chemistry Parameters

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q	
Halides, Adsorbable Organic (AOX)	1650C	ND U	mg/L	0.020	1	10/06/23 11:59	*	

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: ALS Environmental - Canada

Water

Project: EO2308479

Service Request: K2310695 **Date Collected:** 09/19/23 10:30

Date Received: 09/22/23 10:20

Sample Name: EO2308

Sample Matrix:

Lab Code:

EO2308479-003 K2310695-003 Basis: NA

General Chemistry Parameters

	Allalysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Halides, Adsorbable Organic (AOX)	1650C	ND U	mø/L	0.020	1	10/06/23 11:59	*

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: ALS Environmental - Canada **Service Request:** K2310695

Project: EO2308479 Date Collected: NA

Sample Matrix: Water Date Received: NA

Sample Name:

Batch QC

Basis: NA

Lab Code: KQ2317671-09

General Chemistry Parameters

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Halides, Adsorbable Organic (AOX)	1650C	2.3	mg/L	1.0	50	10/06/23 11:59	

QC Summary Forms

General Chemistry

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: ALS Environmental - Canada

Project:EO2308479Date Collected:NASample Matrix:WaterDate Received:NA

Sample Name: Method Blank Basis: NA

Lab Code: K2310695-MB

General Chemistry Parameters

Analysis

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q	
Halides, Adsorbable Organic (AOX)	1650C	ND U	mg/L	0.020	1	10/06/23 11:59		

Service Request: K2310695

ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client: ALS Environmental - Canada

Project: EO2308479/ **Sample Matrix:** Water

Service Request: K2310695

Date Collected: NA **Date Received:** NA

Date Analyzed: 10/06/2023 **Analysis Lot:** 819707

Calibration and Method Blank Summary Halides, Adsorbable Organic (AOX)

1650C

	Halide Check Standard (ug)	Instrument Calibration Standard (ug)	PAR Standard (ug/L)
True Value	3.64	10.0	0.100
Run A Percent Recovery A Run B Percent Recovery B	3.52 97 3.85 106	10.9 109 10.4 104	0.104 104

ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client: ALS Environmental - Canada

Service Request:

EO2308479 **Date Collected:** N/A **Sample Matrix:** Water **Date Received:** N/A

Date Analyzed: 10/6/23 **Date Extracted:** NA

K2310695

Duplicate Matrix Spike Summary Halides, Adsorbable Organic (AOX)

Sample Name: Batch QC **Units:** mg/L Lab Code: KQ2317671-09 **Basis:** NA

Analysis Method: 1650C **Prep Method:** None

Project:

Matrix Spike Duplicate Matrix Spike

KQ2317671-09MS KQ2317671-09DMS

RPD Sample Spike Spike % Rec **Analyte Name** Result Result **Amount** Limits Result **Amount** % Rec % Rec **RPD** Limit 2.3 Halides, Adsorbable Organic (AOX) 11.6 10.0

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

www.alsglobal.com

COC Number: 22 ō

Environmental Division

Edmonton

SUSPECTED HAZARD (see notes) □ YES □ N/A Work Order Reference EO2308479 EXTENDED STORAGE REQUIRED COOLING INITIATED FINAL COOLER TEMPERATURES °C SAMPLES ON HOLD 2 Felephone: +1 780 413 5227 Oustody Seals Intact: ☐ YES ☐ N/A Sample Custody Seals Intact: INITIAL COOLER TEMPERATURES °C FINAL COOLER TEMPER FINAL SHIPMENT RECEPTION (ALS use only) □ YES Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below SAMPLE RECEIPT DETAILS (ALS use only) FROZEN Submission Comments identified on Sample Receipt Notification: 4 day [P4] if received by 3pm M-F - 20% rush surcharge minimurr 3 day [P2] if received by 3pm M-F - 25% rush surcharge minimur 2 day [P2] if received by 3pm M-F - 50% rush surcharge minimur 1 day [E] if received by 3pm M-F - 100% rush surcharge minimur For all tests with rush TATs requested, please con Same day [E2] if received by 10am M-5 - 200% rush surcharge. Analysis Requ Additional fees may apply to rush requests on weekends. P2 P2 P2 Sulphate LACE PACKS Routine [R] if received by 3pm M-F - no surcharges apply P2 P2 P2 wnipos Turnaround Time (TAT) Requested 2 2 P2 Chloride Date and Time Required for all E&P TATS: P2 P2 P2 P2 P2 P2 SST NONE Cooler Custody Seals Intact: P2 P2 P2 LDS P2 P2 P2 12.3 COD Cooling Method: P2 P2 P2 Hd œ œ œ 7.5 3 5.4 alds 7.3 E илмвек оғ соитаімека Sample Type Surface Water Surface Water Surface Water Compare Results to Criteria on Report - provide details below if box checked Todd Webb Ammonia, Chloride, Sodium, and Sulfate analysis. Report rush parameters asap. All other INITIAL SHIPMENT RECEPTION (ALS use only Select Report Format: PDF Excel EDD (DIGITAL) Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only) Select Invoice Distribution: Select Invoice Distribution: Analyze as per Table 4.3E package (attached). Please rush pH, COD, TDS, TSS, ☐ MAIL ☐ FAX Oil and Gas Required Fields (client use) Email 1 or Fax Dennis.Stephanie@cleanharbors.com Routing Code: Email 1 or Fax webb.todd@cleanharbors.com (hh:mm) yuha.stan@cleanharbors.ccm Time 530 30 Reports / Recipients Sampler: 22 Invoice Recipients #Od Pamela Toledo EMAIL (dd-mmm-yy) 19-Sep-23 19-Sep-23 19-Sep-23 Date Select Distribution: Major/Minor Code; ALS Contact: AFE/Cost Center: Requisitioner: Received/by .ocation: Email 2 Email 3 Email 2 19-Sep-23 Time: Sample Identification and/or Coordinates (This description will appear on the report) Contact and company name below will appear on the final report ALS Lab Work Order # (ALS use only): F 02308 479 Company address below will appear on the final report ON 9 E022-CHES100-008 YES YES SHIPMENT RELEASE (client use) 2023 Table 4.3E Annual Pond chemistry PO Box 390, 50114 Range Road 173 Project Information Drinking Water (DW) Samples¹ (client use) Are samples taken from a Regulated DW System? Copy of Invoice with Report Clean Harbors Canada Todd Webb, Stan Yuha Are samples for human consumption/ use? Clean Harbors Canada Same as Report To Stephanie Dennis **Tipping Pad Pond** (780) 663-2513 Lodd Webb Table 4.3E ALS Account # / Quote #: Ryley, AB **TOB 4A0** ☐ YES ☐ NO 2 236266 Pond C Pond B □ YES ALS Sample # (ALS use only) City/Province: Postal Code: Released by: nvoice To Report To Company: Company: PO / AFE: Contact: Contact: Phone: Street: Job #:

LSD:

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. Time: 3:43
YELLOW - CLIENT COPY WHITE - LABOR . If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form. REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION

Time:

Received by:

7-Sept -2023